Advertisement

On the Sup-norm Condition Number of the Multivariate Triangular Bernstein Basis

  • Tom Lyche
  • Karl Scherer
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 125)

Abstract

We give an upper bound for the L condition number of the triangular Bernstein basis for polynomials of total degree at most n in s variables. The upper bound grows like (s + 1) n when n tends to infinity. Moreover the upper bound is independent of s for sn — 1.

Keywords

Condition Number Asymptotic Formula Total Degree Bernstein Basis Chebyshev System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Boor C., On local linear functional which vanish at all B-splines but one, in Theory of Approximation with Applications, Law, A. G. and Sahney, N. B. (eds.), Academic Press, New York, 1976, 120–145.Google Scholar
  2. 2.
    Hoschek J. and Lasser D., Fundamentals of Computer Aided Geometric Design, AKPeters, Boston, 1993.zbMATHGoogle Scholar
  3. 3.
    Lyche T., A note on the condition numbers of the B-spline bases, J. Approx. Theory 22 (1978), 202–205.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Scherer K. and Shadrin A. Yu., New upper bound for the B-Spline basis condition number. East J. Approx. 2 (1996), 331–342.MathSciNetzbMATHGoogle Scholar
  5. 5.
    Schumaker L. L., Spline Functions: Basic Theory, Wiley, New York; 1981.zbMATHGoogle Scholar
  6. 6.
    Stroud A. H., Approximate Calculation of Multiple Integrals, Prentice-Hall, Englewood Cliffs, New Jersey, 1971.zbMATHGoogle Scholar
  7. 7.
    Whittaker E. T. and Watson G. N., A Course of Modern Analysis, Cambridge University Press, London, Fourth Edition 1927.zbMATHGoogle Scholar

Copyright information

© Springer Basel AG 1997

Authors and Affiliations

  • Tom Lyche
    • 1
  • Karl Scherer
    • 2
  1. 1.Institutt for informatikkUniversity of OsloBlindemOsloNorway
  2. 2.Institut für angewandte MathematikRheinische Friedrich-Wilhems-Universität BonnBonnGermany

Personalised recommendations