Advertisement

Bioaccumulation of contaminants in fish

  • Bruno Streit
Part of the EXS book series (EXS, volume 86)

Summary

The term bioaccumulation is defined as uptake, storage, and accumulation of organic and inorganic contaminants by organisms from their environment. Bioaccumulation therefore results from complex interactions between various routes of uptake, excretion, passive release, and metabolization. For fish, the bioaccumulation process includes two routes of uptake: aqueous uptake of water-borne chemicals, and dietary uptake by ingestion of contaminated food particles. The contribution to bioaccumulation that results from aqueous exposure and is taken up by the gills is called bioconcentration. The contribution to bioaccumulation resulting from dietary exposure via uptake by intestinal mucosa is termed biomagnification. In both cases, important co-determinants for bioaccumulation are the various elimination mechanisms. This chapter presents a short historical survey of the problem of bioaccumulation with particular reference to fish and of the various approaches to study bioaccumulation. This is followed by an overview of our present knowledge about basic physico-chemical determinants that either increase or reduce the bioaccumulation potential of various chemicals, and about the physiological basis of gills, blood circulation and intestines, as far as they are crucial for our understanding of uptake and accumulation. Finally, selected quantitative data and modelings of bioaccumulation in fish will be discussed, with regard to such problems as the relative importance of aqueous and dietary uptake.

Keywords

Rainbow Trout Lake Trout Bioconcentration Factor Gill Epithelium Fish Gill 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D.H. (1983) Compartmental modeling and tracer kinetics. In: Lecture notes in biomathematics, Vol. 50. Springer, Berlin, 302 pp.Google Scholar
  2. Banerjee, S., G.L. and Baughman (1991) Bioconcentration factors and lipid solubility. Environ. Sci. Technol. 25: 536–539.CrossRefGoogle Scholar
  3. Barber, M.C., Suarez, L.A. and Lassiter, R.R. (1988) Modeling bioconcentration of nonpolar organic pollutants in fish. Environ. Toxicol. Chem. 7:545–558.CrossRefGoogle Scholar
  4. Barber, M.C., Suarez, L.A. and Lassiter, R.R. (1991) Modeling bioaccumulation of organic pollutants in fish with an application to PCBs in Lake Ontario salmonids. Can. J. Fish. Aquat. Sci. 48:318–337.CrossRefGoogle Scholar
  5. Barron, M.G. (1990) Bioconcentration. Environ. Sci. Technol. 24:1612–ff.CrossRefGoogle Scholar
  6. Barron, M.G. (1995) Bioaccumulation and bioconcentration in aquatic organisms. In: Hoffman, D.J., Rattner, B.A., Burton, G.A. and Cairns, J. (eds.) Handbook of ecotoxicology. Lewis Publ., Boca Raton, pp. 652–666.Google Scholar
  7. Baughman, G.L. and Paris, D.F. (1982) Microbial bioconcentration of organic pollutants from aquatic systems — a critical review. CRC Crit. Rev. Microbiol. 205–227.Google Scholar
  8. Bierman, V.J. (1990) Equilibrium parititioning and biomagnification of organic chemicals in benthic animals. Environ. Sci. Technol. 24:1407–1412.CrossRefGoogle Scholar
  9. Boland, E.J. and Olson, K.R. (1979) Vascular organization of the catfish gill filament. Cell Tissue Res. 198: 487–500.PubMedCrossRefGoogle Scholar
  10. Booth, J.H. (1978) The distribution of blood flow in the gills of fish: application of a new technique to rainbow trout (Salmo gairdneri). J. Exp. Biol. 73:119–129.Google Scholar
  11. Bruggeman, W.A., Martron, L.B.J.M., Kooiman, D. and Hutzinger, O. (1981) Accumulation and elimination kinetics of di-, tri-and tetra-chlorobiphenyls by goldfish after dietary and aqueous exposure. Chemosphere 10:811–832.CrossRefGoogle Scholar
  12. Bryan, G.W and Langston, W.J. (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: A review. Environ. Pollut. 76:89–131.PubMedCrossRefGoogle Scholar
  13. Butte, W, Paul, C., Willig, A. and Zauke, G.-P. (1988) Beziehungen zwischen der Struktur von Phenolen and ihrerAkkumulation gemessen im Flow-through Fisch-Test (OECD No. 305E). Forschungsbericht im Auftrag des Umweltbundesamtes (FKZ 106 02 053), Oldenburg.Google Scholar
  14. Carson, E.R., Cobelli, C. and Finkelstein, L. (1983) The mathematical modeling of metabolic and endocrine systems. John Wiley and Sons, New York, 394 pp.Google Scholar
  15. Chiou, C.T. (1985) Partition coefficients of organic compounds in lipid-water systems and correlations with fish bioconcentration factors. Environ. Sci. Technol. 19:57–62.CrossRefGoogle Scholar
  16. Cobelli, C. and Goffolo, G. (1985) Compartmental and noncompartmental models as candidate classes for kinetic modeling, theory and computational aspects. In: Eisenfeld J. and DeLisi, C. (eds.) Mathematics and computers in biomedical applications. Elsevier Science Publishers B.V. (North-Holland).Google Scholar
  17. Connell, D.W. (1998) Bioaccumulation of chemicals by aquatic organisms. In: Schüürmann, G. and Markert, B. (eds.) Ecotoxicology. John Wiley and Sons Inc., New York, and Spektrum Akademischer Verlag, Heidelberg, p. 439–450.Google Scholar
  18. Covell, D.G., Berman, M. and Charles, D. (1984) Mean residence time — theoretical development, experimental determination, and practical use in tracer analysis. Math. Biosci. 72: 213–244.CrossRefGoogle Scholar
  19. Cowan, C.E., Versteeg, D.J., Larson, R.J. and Kloepper-Sams-P.J. (1995) Integrated approach for environmental assessment of new and existing substances. Reg. Toxicol. Pharmacol. 21: 3–31.CrossRefGoogle Scholar
  20. Dauble, D.D. and Curtis, L.R. (1989) Rapid branchial excretion of dietary quinoline by rainbow trout (Salmo gairdneri). Can. J. Fish. Aquat. Sci. 46:705–713.CrossRefGoogle Scholar
  21. Davies, J.C. (1970) Estimation of circulation time in rainbow trout, Salmo gairdneri. J. Fish. Res. Bd. Can. 27: 1860–1863.CrossRefGoogle Scholar
  22. diToro, D.M., Zarba, C.S., Hansen, D.J., Berry, W.J., Swartz, R.C., Cowan, C.E., Pavlou, S.P., Allen, H.E., Thomas, N.A. and Paquin, P.R. (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ. Toxicol. Chem. 10:1541–ff.CrossRefGoogle Scholar
  23. Donkin, P. (1994) Quantitative structure-activity relationships. In: Calow, P. (ed.) Handbook of ecotoxicology. Vol. 2, Blackwell, Oxford, p. 321–347.Google Scholar
  24. Erickson, R.J. and McKim, J.M. (1990) A model for exchange of organic chemicals at fish gills: flow and diffusion limitations. Aquat. Toxicol. 18: 175–198.CrossRefGoogle Scholar
  25. Fent, K., Lovas, R. and Hunn, J. (1991) Bioaccumulation, elimination and metabolism of triphenyltin chloride by early life stages of minnows Phoxinus phoxinus. Naturwissenschaften 78:125–127.CrossRefGoogle Scholar
  26. Gehrke, P.C. (1987) Cardio-respiratory morphometrics of the spangled perch Leioptherapon unicolor (Gunter, 1859) (Percoidei, Teraponidae). J. Fish. Biol. 31: 617–623.CrossRefGoogle Scholar
  27. Geyer, H., Sheehan, D., Kotzias, D., Freitag, D. and Korte, E (1982) Prediction of ecotoxicological behaviour of chemicals: relationship between physicochemical properties and bioaccumulation of organic chemicals in the mussel. Chemosphere 11:1121–1134.CrossRefGoogle Scholar
  28. Geyer, H., Scheunert, I. and Korte, E (1985) Relationship between the lipid content of fish and their bioconcentation potential of 1,2,4-trichlorobenzene. Chemosphere 14:545–555.CrossRefGoogle Scholar
  29. Geyer, H.J., Muir, D.C.G., Scheunert, I., Steinberg, C.E.W. and Kettrup, A.A.W. (1992) Bioconcentration of octachlorodibenzo-p-dioxin (OCDD) in fish. Chemosphere 25: 1257–1264.CrossRefGoogle Scholar
  30. Geyer, H., Muir, D.C.G., Scheunert, I., Steinberg, C.E.W. and Kettrup, A.W. (1994a) Bioconcentation of superlipophilic persistent chemicals — Octachlorodibenzo-p-dioxin (OCDD) in fish. Environ. Sci. Pollut. Res. 1:75–80.CrossRefGoogle Scholar
  31. Geyer, H.J., Scheunert, I., Brüggemann, R., Matthies, M., Steinberg, C.E.W., Zitko, V, Kettrup, A. and Garrison, W. (1994b) The relevance of aquatic organisms“ lipid content to the toxicity of lipophilic chemicals: Toxicity of lindane to different fish species. Ecotox. Environ. Safety 28:53–70.CrossRefGoogle Scholar
  32. Gobas, F.A.P.C. and Mackay, D. (1987) Dynamics of hydrophobic organic chemical bioconcentration in fish. Environ. Toxicol. Chem. 6:495–504.CrossRefGoogle Scholar
  33. Gunkel, G. and Streit, B., (1980) Mechanisms of bioaccumulation of a herbicide (atrazine, s-triazine) in a freshwater mollusc (Ancylus fluviatilis Müll.) and a fish (Coregonus fera Jurine). Water Res. 14:1574–1584.CrossRefGoogle Scholar
  34. Hawker, D.W. and Connell, D.W. (1986) Bioconcentration of lipophilic compounds by some aquatic organisms. Ecotox. Environ. Safety 11: 184–197.CrossRefGoogle Scholar
  35. Hayton, W.L. and Barron, M.G. (1990) Rate limiting barriers to xenobiotic uptake by the gill. Environ. Toxicol. Cheat. 9:151—ff.Google Scholar
  36. Holmes, W.N. and Donaldson, E.M. (1969) The body compartments and the distribution of electrolytes. In: Hoar, W.S. and Randall D.J. (eds.) Fish physiology. Vol. I. Academic Press, London, p. 1–89.Google Scholar
  37. Hughes, G.M. (1966) The dimensions of fish gills in relation to their function. J Exp. Biol. 45: 177–195.PubMedGoogle Scholar
  38. Hughes, G.M (1972) Morphometrics of fish gills. Respira Physiol. 14:1–25.CrossRefGoogle Scholar
  39. Hughes, G.M. (1984) General anatomy of the gills. In: Hoar, W.S. and Randall D.J. (eds.) Fish physiology. Vol. X Part A. Academic Press, London, p. 1–72.Google Scholar
  40. Karickhoff, S.W., Brown, D.S. and Scott, T.A. (1979) Sorption of hydrophobic pollutants on natural sediments and soil. Water Res. 13:241–248.CrossRefGoogle Scholar
  41. Kenaga, E.E. and Goring, C.A. (1980) Relationship between water solubility, soil sorption, octanol-water partitioning and bioconcentration of chemicals in biota. In: Eaton J.G. et al. (eds.) Aquatic toxicology, Vol. 7. Amer. Soc. Test. Mat. STM, Philadelphia.Google Scholar
  42. Kornmayer, R. and Streit, B., (1978) Adsorption und Anreicherung von Atrazin und seinen Abbauprodukten an Flußwassersediment. Arch. Hydrobiol. Suppl. 55: 186–210.Google Scholar
  43. Lake, J.L. (1990) Equilibrium partitioning and bioaccumulation of sediment-associated conta-minants by infaunal organisms. Environ. Toxicol. Chem. 9:1095–1106.CrossRefGoogle Scholar
  44. MacKay, D. (1982) Correlation of bioconcentration factors. Environ. Sci. Technol. 16:274–278.CrossRefGoogle Scholar
  45. MacKay, D. (1991) Multimedia environmental models: the firgacity approach. Lewis, Chelsea, 257 pp.Google Scholar
  46. Mackay, D. (1998) Multimedia mass balance models of chemical distribution and fate. In: Schüürmann, G. and Markert, B. (eds.) Ecotoxicology. John Wiley and Sons Inc., New York, and Spektrum Akademischer Verlag, Heidelberg, p. 237–257.Google Scholar
  47. Maren, T.H., Embry, R., Broder and L.E. (1968) The excretion of drugs across the gill of the dogfish, Squalus acanthias. Comp. Biochem. Physiol. 26:853–864.CrossRefGoogle Scholar
  48. Motais, R., Isaia, J., Rankin, J.C. and Maetz, J. (1969) Adaptive changes of the water permeability of the teleostean gill epithelium in relation to external salinity. J. Exp. Biol. 51: 529–546.PubMedGoogle Scholar
  49. Murphy, P.G. and Murphy, J.V. (1971) Correlations between respiration and direct uptake of DDT in the mosquito fish Gambusia affinis. Bull. Environ. Contain. Toxicol. 6:581–588.CrossRefGoogle Scholar
  50. Nagel, R. (1988) Umweltchenikalien und Fische — Beiträge zu einer Bewertung. Habilitations-schrift, Univ. Mainz (FRG), 256 pp.Google Scholar
  51. Neely, W.B., Branson, D.R. and Blau, G.E. (1974) Partition coefficients to measure bio- concentration potential of organic chemicals in fish. Environ. Sci. Technol. 8: 1113–1115.CrossRefGoogle Scholar
  52. Nendza, M. (1991) QSARs of bioconcentration: Validity assessment of log Pow/log BCF correlations. In: Nagel, R. and Loskill, R. (eds.) Bioaccumulation in aquatic systems. Contributions to the assessment. VCH, Weinheim, p. 43–66.Google Scholar
  53. Niimi, A.J. and Morgan, S.L. (1980) Morphometric examination of the gills of walleye, Stizostedion vitreum vitreum (Mitchell) and rainbow trout, Salmo gairdneri (Richardson). J. Fish Biol. 16:685–692.CrossRefGoogle Scholar
  54. Ogata, M., Fujisawa, K., Ogino, Y. and Mano, E. (1984) Partition coefficients as a measure of bioconcentration potential of crude oil compounds in fish and shellfish. Bull. Environ. Con-tom. Toxicol. 33: 561–567.CrossRefGoogle Scholar
  55. Oikawa, S. and Itazawa, Y. (1985) Gill and body surface areas of the carp in relation to body mass, with special reference to the metabolic-size relationship. J. Exp. Biol. 117: 1–14.Google Scholar
  56. Oliver, B.G. and Niimi, A. (1983) Bioconcentration of chlorobenzenes from water to rainbow trout: correlation with partition coefficients and environmental residues. Environ. Sci. Technol. 17:287–291.CrossRefGoogle Scholar
  57. Opperhuizen, A. (1991) Bioconcentration and biomagnification: is a distinction necessary? In: Nagel, R. and Loskill, R. (eds.) Bioaccumulation in aquatic systems. Contributions to the assessment. VCH, Weinheim, p. 67–80.Google Scholar
  58. Opperhuizen, A., Velde, E.W. van den, Gobas, EA.P.C., Liem, D.A.K. and Steen, J.M.D. van den (1985) Relationships between bioconcentration in fish and steric factors of hydrophobic chemicals. Chemosphere 14:1871–1896.CrossRefGoogle Scholar
  59. Paling, J.E. (1968) A method of estimating the relative volumes of water flowing over the different gills of a freshwater fish. J. Exp. Biol. 48:533–544.PubMedGoogle Scholar
  60. Phillips, D.J.H. (1980) Quantitative aquatic biological indicators — their use to monitor trace metal and organochlorine pollution. Applied Science Publishers, London, 488 pp.Google Scholar
  61. Phillips, D.J.H. (1993) Bioaccumulation. In: Calow, P. (ed.) Handbook ofecotoxicology. Vol. 1, Blackwell, Oxford, p. 378–396.Google Scholar
  62. Piiper, J. and Scheid, P. (1984) Model analysis of gas transfer in fish gills. In: Hoar, W.S. and Randall D.J. (eds.) Fish physiology. Vol. X, Part A. Academic Press, London, p. 229–262.Google Scholar
  63. Piiper, J., Scheid, P., Perry, S.F. and Hughes, G.M. (1986) Effective and morphological oxygen-diffusing capacity of the gills of the elasmobranch Scyliorhinus stellaris. J. Exp. Biol. 123:27–41.Google Scholar
  64. Plakas, S.M., McPhearson, R.M. and Guarino, A.M. (1988) Disposition and bioavailability of H3-tetracycline in the channel catfish (Ictalurus punctatus). Xenobiotica 18:83–93.PubMedCrossRefGoogle Scholar
  65. Price, J.W. (1931) Growth and gill development in the small mouthed black bass, Micropterus dolomieui Lacepede. Stud. Ohio State Univ. 4:1–46.Google Scholar
  66. Pritchard, J.B. and Bend, J.R. (1991) Relative roles of metabolism and renal excretory mechanisms in xenobiotic elimination by fish. Environ. Health Perspect. 90:85–92.PubMedCrossRefGoogle Scholar
  67. Reinert, R.E. and Bergman, H.L. (1974) Residues of DDT in lake trout (Salvelinus namaycush) and coho salmon (Oncorhynchus kisutch) from the Great Lakes. J. Fish Res. Bd. Can. 31: 191–199.CrossRefGoogle Scholar
  68. Saarikosi, J., Lindstrom, R., Tyynela, M. and Viluksela, M. (1986) Factors affecting the absorption of phenolics and carboxylic acids in the guppy (Poecilia reticulata). Ecotox. Environ. Safety 11:158–173.CrossRefGoogle Scholar
  69. Satchell, G.H. (1991) Physiology and form of fish circulation. Cambridge University Press, Cambridge, 235 pp.CrossRefGoogle Scholar
  70. Saunders, R.L. (1962) The irrigation of the gills in fishes. II. Efficiency of oxgen uptake in relation to respiratory flow acitvity and concentrations of oxygen and carbon dioxide. Can. J. Zool. 40:817–862.CrossRefGoogle Scholar
  71. Schrap, S.M. (1991) Bioavailability of organic chemicals in the aquatic environment. Comp. Biochem. Physiol. 100C:13–16.Google Scholar
  72. Sidell, B.D. and Hazel, J.R. (1987) Temperature affects the diffusion of small molecules through cytosol of fish muscle. J. Exp. Biol. 129: 191–203.PubMedGoogle Scholar
  73. Sire, M.F., Lutton, C. and Vernier, J.M. (1981) New views on intestinal absorption of lipids in teleostean fishes: An ultrastructural and biochemical study in the rainbow trout. J. Lipid Res. 22:81–94.PubMedGoogle Scholar
  74. Södergren, A. and Svensson, B. (1973) Uptake and accumulation of DDT and PCB by Ephemera danica (Ephemeroptera) in continuous-flow systems. Bull. Environ. Contam. Toxicol. 9:345–350.PubMedCrossRefGoogle Scholar
  75. Spigarelli, S.A., Thommes, M.M., and Prepejchal, W. (1983) Thermal and metabolic factors affecting PCB uptake by adult brown trout. Environ. Sci. Technol. 17:88–94.PubMedCrossRefGoogle Scholar
  76. Streit, B. (1979a) Uptake, accumulation and release of organic pesticides by benthic invertebrates. 2. Reversible accumulation of lindane, paraquat and 2,4-D from aqueous solution by invertebrates and detritus. Arch. Hydrobiol. Suppl. 55:324–348.Google Scholar
  77. Streit, B. (1979b) Uptake, accumulation and release of organic pesticides by benthic invertebrates. 3. Distribution of“C-atrazine and ”C-lindane in an experimental 3-step food chain microcosm. Arch. Hydrobiol. Suppl. 55: 374–400.Google Scholar
  78. Streit, B. (1990) Chemikalien im Wasser: Experimente and Modelle zur Bioakkumulation bei Süßwassertieren. In: Kinzelbach, R. and Friedrich, G. (eds.) Limnologie aktuell, Band 1: Biologie des Rheins. G. Fischer, Stuttgart, p. 107–130.Google Scholar
  79. Streit, B. (1992) Bioaccumulation processes in ecosystems. Review. Experientia 48:955–970. Streit, B. (1994) Lexikon Ökotoxikologie. 2. Aufl., VCH, Weinheim, 899 pp.Google Scholar
  80. Streit, B. (1998) Community ecology and population interactions in freshwater systems. In: Schüürmann, G. and Markert, B. (eds.) Ecotoxicology. John Wiley and Sons Inc., New York, and Spektrum Akademischer Verlag, Heidelberg, p. 133–161.Google Scholar
  81. Streit, B. and Schwoerbel, J. (1976/77) Experimentelle Untersuchungen über die Akkumulation von Herbiziden bei benthischen Süsswassertieren. Verh. Ges. Ökol. 1976:371–383.Google Scholar
  82. Streit, B. and Siré, E.-O. (1993) On the role of blood proteins for uptake, distribution, and clearance of waterborne lipophilic xenobiotics by fish: A linear system analysis. Chemosphere 26: 1031–1039.CrossRefGoogle Scholar
  83. Streit, B. and Winter, S. (1993) Cadmium uptake and compartmental time characteristics in the freshwater mussel Anodonta anatina. Chemosphere 26:1479–1490.CrossRefGoogle Scholar
  84. Streit, B., Siré, E.-O., Kohlmaier, G.H., Badeck, F.W. and Winter, S. (1991) Modeling ventilation efficiency of teleost fish gills for pollutants with high affinity to plasma proteins. Ecol. Model. 57:237–262.CrossRefGoogle Scholar
  85. Suedel, B.C., Boraczek, J.A., Peddicord, R.K., Clifford, P.A. and Dillon, T.M. (1994) Trophic transfer and biomagnification potential of contaminants in aquatic ecosystems. Rev. Environ. Contain. Toxicol. 136: 21–89.CrossRefGoogle Scholar
  86. Thomann, R.V. (1989) Bioaccumulation model of organic chemical distribution in aquatic food chains. Environ. Sci. Technol. 23:699–707.CrossRefGoogle Scholar
  87. Thomann, R.V. and Connolly, J.P. (1984) Model of PCB in the Lake Michigan lake trout food chain. Environ. Sci. Technol. 18:65–71.PubMedCrossRefGoogle Scholar
  88. Thomann, R.V., Connolly, J.P. and Parkerton, T.F. (1992) An equilibrium model of organic chemical accumulation in aquatic food webs with sediment interaction. Environ. Toxicol. Chem. 11: 615–629.CrossRefGoogle Scholar
  89. Tjalve, H., Gottofrey, J. and Borg, K. (1988) Bioaccumulation, distribution and retention of Ni in the brown trout (Salmo trautta). Water Res. 22:1129–1136.CrossRefGoogle Scholar
  90. Vetter, R.D., Carey, M.C., Patton and J.S. (1985) Coassimilation of dietary fat and benzo[a]py-rene in the small intestine: an absorption model using the killifish. J. Lipid Res. 26:428–434.PubMedGoogle Scholar
  91. Veith, G.D. and Kosian, P. (1983) Estimating bioconcentration potential from octanol/water partition coefficients. In: MacKay, D. et al. (eds.) Physical behavior of PCBs in the Great Lakes. Ann Arbor Science Publishers, Ann Arbor.Google Scholar
  92. Veith, G.D., DeFoe, D.L. and Bergstedt, B.V. (1979) Measuring and estimating the bio-concentration factor of chemicals in fish. J Fish. Res. Board Can. 36:1040–1048.CrossRefGoogle Scholar
  93. Weininger, D. (1978) Accumulation of PCBs by lake trout in Lake Michigan. Ph.D. thesis, University of Wisconsin-Madison, Madison, WI. 1–232.Google Scholar
  94. Woodwell, G.M. (1967) Toxic substances and ecological cycles. Sci. Amer. 216:24–31.PubMedCrossRefGoogle Scholar
  95. Wootton, R.J. (1990) Ecology of teleost fishes. Chapman and Hall, London.Google Scholar

Copyright information

© Springer Basel AG 1998

Authors and Affiliations

  • Bruno Streit
    • 1
  1. 1.Department of Ecology and Evolution, Biological SciencesJ. W Goethe-University of FrankfurtFrankfurtGermany

Personalised recommendations