Advertisement

Invariant and hyperinvariant subspaces of direct sums of simple Volterra operators

  • M. M. Malamud
Part of the Operator Theory: Advances and Applications book series (OT, volume 102)

Abstract

Let J be the integration operator defined on L p [0,1], let J α, α > 0, be its positive powers, and let B be a nonsingular n ß n diagonal matrix. The lattices of invariant and hyperinvariant subspaces of the Volterra operator J αB defined on L p [0,1] ⊗ ℂn are described in geometric terms

Keywords

Entire Function Invariant Subspace Convolution Operator Zero Divisor Convolution Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B1]
    Brodskii, M.S.: On unicellularity of real Volterra operators; Dokl. Acad. Nauk. 147:5 (1962), 1010–1012 (in Russian).MathSciNetGoogle Scholar
  2. [B2]
    —: Triangular and Jordan Representations on Linear operators; Transi. Math. Monographs 32, Amer. Math. Soc, Providence RI 1971.Google Scholar
  3. [CW]
    Conway, G.B., Wu, P.Y.: The splitting of A(T 1T 2) and related questions; Indiana Univ. Math. J. 26:1 (1977), 41–56.MathSciNetCrossRefGoogle Scholar
  4. [D]
    Dixmier, J.: Les opérateurs permutables à l’opérateur intégral; Portugal Math. 8 (1949), 73–84.zbMATHGoogle Scholar
  5. [Dj]
    Djarbashan, M.M.: Integral Transformations and Functions Representations in Complex Domain; Nauka, Moscow 1966 (in Russian).Google Scholar
  6. [FR]
    Frankfurt, R., Rovnyak, J.: Recent results and unsolved problems of finite convolution operators; in: Linear Spaces and Approximation, Butzer, P.L., Sz.-Nagy, B. (eds.), Internat. Ser. Numer. Math. 40 (1978), 133–150.Google Scholar
  7. [GK]
    Gohberg, I.C., Krein, M.G.: Theory and Applications of Volterra operators in Hilbert space; Transi. Math. Monographs 24, Amer. Math. Soc, Providence RI 1970.Google Scholar
  8. [K]
    Kalish, G.K.: Characterization of direct sums and commuting sets of Volterra operators; Pacific J. Math. 18:3 (1966), 545–552.MathSciNetCrossRefGoogle Scholar
  9. [KA]
    Kantorovich, L.V., Akilov, G.P.: Functional Analysis; Nauka, Moscow 1977 (in Russian).Google Scholar
  10. [L]
    Levin, B.JA.: Distribution of Zeros of Entire Functions; Transi. Math. Monographs 5, Amer. Math. Soc, Providence RI 1964.Google Scholar
  11. [M1]
    Malamud, M.M.: Similarity of Volterra operators and related questions of the theory of differential equations of fractional order; Trans. Moscow Math. Soc. 55 (1994), 57–122.MathSciNetGoogle Scholar
  12. [M2]
    —: The connection between a potential matrix of a Dirac system and its Wronskian; Dokl. Acad. Nauk. 344:5 (1995), 601–604 (in Russian).MathSciNetGoogle Scholar
  13. [M3]
    —: Inverse problems for some systems of ordinary differential equations; Uspekhi Mat. Nauk. 50:4 (1995), 145–146 (in Russian).Google Scholar
  14. [M4]
    —: On cyclic subspaces of Volterra operators; Dokl. Acad. Nauk. 349:3 (1996), 454–458 (in Russian).MathSciNetGoogle Scholar
  15. [N1]
    Nikolskii, N.K.: Treatise on the Shift Operator; Springer Verlag, Berlin 1986.CrossRefGoogle Scholar
  16. [N2]
    —: Multicyclicity phenomenon. I. An introduction and maxi-formulas; Operator Theory: Adv. Appl. 42 (1989), 9–57.Google Scholar
  17. [OS1]
    Osilenker, B.P., Shul’man, V.S.: On lattices of invariant subspaces of some operators; Funktsional Anal, i Prilozhen. 17:1 (1983), 81–82 (in Russian).MathSciNetCrossRefGoogle Scholar
  18. [OS2]
    Shul’man, V.S. —: On lattices of invariant subspaces of some operators; in: Investigations on functions theory of several real variables, Yaroslavl’ 1984, 105–113 (in Russian).Google Scholar
  19. [PW]
    Paley, R., Wiener, N.: Fourier transforms in the complex domain; Amer. Math. Soc, New York 1934.zbMATHGoogle Scholar
  20. [SI]
    Sarason, D.: A remark on the Volterra operator; J. Math. Anal. Appl. 12 (1965), 244–246.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [S2]
    —: Generalized interpolation in H ; Trans. Amer. Math. Soc. 127 (1967), 179–203.MathSciNetzbMATHGoogle Scholar
  22. [SF]
    Sz.-Nagy, B., Foias, C: Harmonic Analysis of Operators on Hilbert Space; Akademiai Kiado, Budapest 1970.zbMATHGoogle Scholar

Copyright information

© Springer Basel AG 1998

Authors and Affiliations

  • M. M. Malamud
    • 1
  1. 1.Department of MathematicsDonetsk State UniversityDonetskUkraine

Personalised recommendations