Advertisement

Infinitely Many Solutions of Nonlinear Elliptic Systems

  • Thomas Bartsch
  • Djairo G. de Figueiredo
Chapter
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 35)

Abstract

In this paper we study elliptic systems of the form
$$ \left\{ {_{\Delta _v = H_{u(x,u,v)in\Omega } }^{ - \Delta _u = H_v (x,u,v)in\Omega } } \right. $$
(1.1)
where Ω ⊂ ℝ N , N > 3, is a smooth bounded domain and H: Ω ℝ ℝ → ℝ C 1-function. We shall also consider the case when Ω = ℝ N and in this case the system takes the form
$$ \left\{ {_{\Delta _v + v = H_u (x,u,v)in\mathbb{R}^N }^{ - \Delta _u + u = H_v (x,u,v)in\mathbb{R}^N } } \right. $$
(1.2)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Bahri and H. Berestycki, “Existence of forced oscillations for some nonlinear differential equations”, Comm. Pure Appl. Math. 37 (1984), 403–442.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    T. Bartsch and M. Clapp, “Critical point theory for indefinite functionals with symmetries”, J. Fctl. Anal. 138 (1996), 107–136.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    T. Bartsch and M. Willem, “Infinitely many nonradial solutions of a Euclidean scalar field equation”, J. Fctl. Anal. 117 (1993), 447–460.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    G. Cerami, “Un criterio di esistenza per i punti critici su varietà illimitate”, Rec. Ist. Lomb. Sci. Lett. 112 (1978), 332–336.MathSciNetMATHGoogle Scholar
  5. [5]
    D.G. Costa and C.A. Magalhães, “A unified approach to a class of strongly indefinite functionals”, J. Diff. Eq. 122 (1996), 521–547.CrossRefGoogle Scholar
  6. [6]
    D.G. de Figueiredo, “Semilinear elliptic systems”, Proceedings of the Second School on Nonlinear Functional Analysis and Applications to Differential Equations, ICTP Trieste 1997, World Scientific Publishing Company (to appear).Google Scholar
  7. [7]
    D.G. de Figueiredo and P. Felmer, “On superquadratic elliptic systems”, Trans. AMS 343 (1994), 99–116.MATHCrossRefGoogle Scholar
  8. [8]
    D.G. de Figueiredo and C.A. Magalhäes, “On nonquadratic Hamiltonian elliptic systems”, Advances in Diff. Eq. 1 (1996), 881–898.MATHGoogle Scholar
  9. [9]
    D.G. de Figueiredo and J. Yang, Decay, “Symmetry and existence of solutions of semilinear elliptic systems”, to appear in Nonlinear Analysis, TMA.Google Scholar
  10. [10]
    P. Felmer, “Periodic solutions of’ superquadratic’ Hamiltonian systems”, J. Diff. Eq. 102 (1993), 188–207.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    S. Li and J.Q. Liu, “Some existence theorems on multiple critical points and their applications”, Kexue Tongbao 17 (1984), [in Chinese].Google Scholar
  12. [12]
    P.-L. Lions, “Symétrie et compacité dans les espaces de Sobolev”, J. Funct. Anal. 49 (1982), 315–334.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    R. S. Palais, “The principle of symmetric criticality”, Comm. Math. Phys. 69 (1979), 19–30.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    B. Sirakov, “On the existence of solutions of elliptic systems in ℝN”, PreprintGoogle Scholar
  15. [15]
    W.A. Strauss, “Existence of solitary waves in higher dimensions”, Comm. Math. Phys. (1977), 149–162.Google Scholar
  16. [16]
    M. Willem, “Minimax Theorems”, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser 1996.Google Scholar

Copyright information

© Springer Basel AG 1999

Authors and Affiliations

  • Thomas Bartsch
    • 1
  • Djairo G. de Figueiredo
    • 2
  1. 1.Mathematisches InstitutUniversität GiessenGiessenGermany
  2. 2.IMECC, UNICAMPCampinasBrazil

Personalised recommendations