Advertisement

The role of Lagrangian chaos in the creation of multifractal measures

Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

In this paper we review and discuss the role of Lagrangian chaos in creating multifractal measures associated with spatial intermittency. In particular, we consider (1) passive scalars, (2) the kinematic magnetic dynamo problem, and (3) the stability of high Reynolds number fluid flows. In all cases we take the underlying flow to be smooth in the sense that it has no fractal or power law properties of its own (its wavenumber power spectrum is peaked at some low value and decays with increasing wavenumber much faster than a power law, e.g., exponentially). Nevertheless, chaos in the Lagrangian dynamics of such flows can lead to fractals and power law wavenumber spectra for relevant physical quantities, such as the distribution of the passive scalar (problem (1)), the magnetic field (problem (2)), and the vorticity field (problem (3)). A key concept used in the quantitative treatment of these problems is that of finite time Lyapunov exponents. This paper will illustrate how consideration of finite time Lyapunov exponents can be used to quantitatively analyze these situations. Thus we provide a connection between quantities of physical interest and ergodic dynamical characterization of the underlying chaos of the flow. In the case of problem (3), we also comment on implications for high Reynolds number fluid turbulence.

Keywords

Vorticity Field Passive Scalar Fluid Element Wavenumber Spectrum Multifractal Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Varosi, T. M. Antonsen, and E. Ott, Phys. Fluids A 3, 1017 (1991); E. Ott and T. M. Antonsen, Phys. Rev. Lett. 61, 2839 (1988).MathSciNetCrossRefGoogle Scholar
  2. [2]
    L. Yu, E. Ott and Q. Chen, Phys. Rev. Lett. 65, 2935 (1990); Physica D 53, 102 (1991).MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    J. C. Sommerer and E. Ott, Science 259, 335 (1993); J. C. Sommerer, Physica D 76, 85 (1994).CrossRefGoogle Scholar
  4. [4]
    T. M. Antonsen, Z. Fan, and E. Ott, Phys. Rev. Lett. 75, 1751 (1995).CrossRefGoogle Scholar
  5. [5]
    T. M. Antonsen, A. Namenson, E. Ott and J. C. Sommerer, Phys. Rev. Lett. 75, 3438 (1995).CrossRefGoogle Scholar
  6. [6]
    C. Reyl, T. M. Antonsen, and E. Ott, Phys. Rev. Lett. 76, 2270 (1996).CrossRefGoogle Scholar
  7. [7]
    M. A. F. Sanjuán, J. Kennedy, E. Ott, and J. A. Yorke, Phys. Rev. Lett. 78, 1892 (1996).CrossRefGoogle Scholar
  8. [8]
    P. Grassberger and I. Procaccia, Physica D 9, 189 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    E. Ott, Chaos in Dynamical Systems (Cambridge University Press, 1994), pp. 78–85.Google Scholar
  10. [10]
    J. D. Farmer, E. Ott, and J. A. Yorke, Physica D 7, 153 (1983).MathSciNetCrossRefGoogle Scholar
  11. [11]
    Ref. 9, Sec. 9.4.Google Scholar
  12. [12]
    R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics (Springer-Verlag, New York, 1985).zbMATHCrossRefGoogle Scholar
  13. [13]
    R. Ramshakar and J. Gollub, Phys. Fluids A 3, 1344 (1991).CrossRefGoogle Scholar
  14. [14]
    F. Ladrappier and L. S. Young, Comm. Math. Phys. 117, 529 (1988).MathSciNetCrossRefGoogle Scholar
  15. [15]
    C. Jung and E. Ziemniak, J. Phys. A 25, 3929 (1992); C. Jung, T. Tél and E. Ziemniak, Chaos 3, 555 (1993); A. Péntek, Z. Toroczkai, T. Tél, C. Grebogi, and J. A. Yorke, Phys. Rev. E 51, 4076 (1995).zbMATHCrossRefGoogle Scholar
  16. [16]
    J. Jacobs, E. Ott, T. M. Antonsen, and J. A. Yorke, Physica D 110, 1 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    J. C. Sommerer, H.-C. Ku, and H. E. Gilreath, Phys. Rev. Lett. 77, 5055 (1966).CrossRefGoogle Scholar
  18. [18]
    Ref. 9, Chapter 5, and references therein; see also E. Ott and T. Tél,Chaos 3, 417 (1993).Google Scholar
  19. [19]
    S. I. Vainshtein and Ya. B. Zeldovich, Sov. Phys. Usp. 15, 159 (1972).CrossRefGoogle Scholar
  20. [20]
    V. I. Arnold, Ya. B. Zeldovich, A. A. Ruzmaikin, and D. D. Sokolov, Sov. Phys. JETP 54, 1083 (1981).Google Scholar
  21. [21]
    B. J. Bayly and S. Childress, Geophys. Astrophys. Fluid Dyn. 44, 211 (1988); ibid. 49, 23 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    J. M. Finn and E. Ott, Phys. Fluids 31, 2992 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    B. J. Bayly and S. Childress, Geophys. Astrophys. Fluid Dyn. 44, 211 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    J. Finn, J. Hanson, I. Kan, and E. Ott, Phys. Rev. Lett. 62, 2965 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    M. M. Vishik, Geophys. Astrophys. Fluid Dyn. 48, 151 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    E. Ott and T. M. Antonsen, Phys. Rev. A 39, 3660 (1989).CrossRefGoogle Scholar
  27. [27]
    J. Finn and E. Ott, Phys. Fluids B 2, 916 (1990).MathSciNetCrossRefGoogle Scholar
  28. [28]
    J. Finn, J. Hanson, I. Kan, and E. Ott, Phys. Fluids B 3, 1250 (1991).MathSciNetCrossRefGoogle Scholar
  29. [29]
    D. J. Galloway and M. R. E. Proctor, Nature 356, 691 (1992).CrossRefGoogle Scholar
  30. [30]
    A. D. Gilbert and B. J. Bayly, J. Fluid Mech. 241, 199 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    A. D. Gilbert, Philos. Trans. R. Soc. London Ser. A 339, 627 (1992).CrossRefGoogle Scholar
  32. [32]
    E. Ott, Y. Du, K. R. Sreenivasan, A. Juneja, and A. K. Suri, Phys. Rev. Lett. 69, 2654 (1992).CrossRefGoogle Scholar
  33. [33]
    Y. Du and E. Ott, Physica D 67, 387 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    Y. Du and E. Ott, J. Fluid Mech. 257, 265 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    Y.-T. Lau and J. Finn, Phys. Fluids B 5, 365 (1993).MathSciNetCrossRefGoogle Scholar
  36. [36]
    A. Soward, Geophys. Astrophys. Fluid Dyn. 73, 179 (1993).MathSciNetCrossRefGoogle Scholar
  37. [37]
    A. D. Gilbert, N. F. Otani, and S. Childress, in Theory of Solar and Planetary Dynamics, edited by M. R. E. Proctor, P. C. Matthews, and A. M. Rucklidge (Cambridge University Press, New York, 1993), pp. 129–136.Google Scholar
  38. [38]
    N. F. Otani, J. Fluid Mech. 253, 327 (1993).zbMATHCrossRefGoogle Scholar
  39. [39]
    Y. Ponty, A. Pouquet, and P. L. Sulem, Geophys. Astrophys. Fluid Dyn. 79, 239 (1995).CrossRefGoogle Scholar
  40. [40]
    F. Cattaneo, E. Kim, M. Proctor, and L. Tao, Phys. Rev. Lett. 75, 1522 (1995).CrossRefGoogle Scholar
  41. [41]
    I. Klapper and L. S. Young, Comm. Math. Phys. 173, 623 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    C. Reyl, E. Ott, and T.M. Antonsen, Phys. Plasmas 3, 2564 (1996).CrossRefGoogle Scholar
  43. [43]
    D. Galloway and U. Frisch, Geophys. Astrophys. Fluid Dyn. 36, 53 (1986); V. I. Arnold and E. I. Korkiina, Vestn. Mosk. Univ. Mat. Mekh. 3, 43 (1983) (in Russian).MathSciNetCrossRefGoogle Scholar
  44. [44]
    E.g., see Ref. 9, p. 143.Google Scholar
  45. [45]
    C. Reyl, T. M. Antonsen, and E. Ott, Phys. Rev. Lett. 78, 2559 (1997); Physica D, to be published (1998).CrossRefGoogle Scholar
  46. [46]
    R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, J. Phys. A.17, 3521 (1984).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1999

Authors and Affiliations

  • E. Ott

There are no affiliations available

Personalised recommendations