Realistic Models of Anisotropic Laminated Lower Crust

  • Melanie Pohl
  • Friedemann Wenzel
  • Thomas Weiss
  • Siegfried Siegesmund
  • Thomas Bohlen
  • Wolfgang Rabbel
Part of the Pure and Applied Geophysics(PAGEOPH) book series (PTV)


The genesis of the laminated lower crust has been attributed to extensional processes leading to structural and textural ordering. This implies that the lower crust might be anisotropic. Laboratory measurements of lower crustal rock samples and xenolithes show evidence of anisotropy in these rocks due to oriented structure.

In this paper we investigate the seismic shear-wave response of realistic anisotropic lower crustal models using the anisotropie reflectivity method. Our models are based on representative petrophysical data obtained from exposed lower crustal sections in Calabria (South Italy), Val Strona and Val Sesia (Ivrea Zone, Northern Italy). The models consist of stacks of anisotropie layers characterized by quantified elastic tensors derived from representative rock samples which provide alternating high and low velocity layers.

The seismic signature of the data is comparable to seismic observations of in situ lower crust. For the models based on the Calabria and Val Strona sequences shear-wave splitting occurs for the Moho reflection at offsets beyond 70 km with travel-time delays up to 300 and 500 ms, respectively. The leading shear wave is predominantly horizontally polarized and followed by a predominantly vertically polarized shear wave. Contrastingly, the Val Sesia model shows no clear evidence of birefringence. Isotropic versus anisotropie modelling demonstrates that the shear-wave splitting is clearly related to the intrinsic anisotropy of the lower crustal rocks for the Val Strona sequence. No evidence of birefringence caused by thin layering is found.

Key words

Anisotropy reflectivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babuška, V., and Cara, M., Seismic Anisotropy in the Earth (Kluwer Academic Publishers 1990).Google Scholar
  2. Backus, G. E. (1962), Long-wave Elastic Anisotropy Produced by Horizontal Layering, J. Geophys. Res. 67, 4427–4440.CrossRefGoogle Scholar
  3. Barruol, G., and Kern, H. (1996), Seismic Anisotropy and Shear-wave Splitting in Lower-crustal and Upper-mantle Rocks from the Ivrea Zone—Experimental and Calculated Data, Phys. Earth Planet. Int. 95, 175–194.CrossRefGoogle Scholar
  4. Barruol, G., and Mainprice, D. (1993), 3-D Seismic Velocities Calculated from Lattice-preferred Orientation and Reflectivity of a Lower Crustal Section: Examples of the Val Sesia Section (Ivrea Zone, Northern Italy), Geophys. J. Int. 115, 1169–1188.CrossRefGoogle Scholar
  5. Bartelsen, H., Lüschen, E., Krey, TH., Meissner, R., Schmoll, H., and Walther, C., The combined seismic reflection-refraction investigation of the Urach Geothermal Anomaly. In The Urach Geothermal Project (ed. Händel, R.) (Schweizerbart, Stuttgart 1982) pp. 247–262.Google Scholar
  6. Booth, D. C., and Cramein, S. (1983). The Anisotropic Reflectivity Technique: Theory,Geophys. J. R. Astr. Soc. 72, 755–766.CrossRefGoogle Scholar
  7. Christensen, N. I. (1971), Shear-wave Propagation in Rocks, Nature 229, 549–550.CrossRefGoogle Scholar
  8. Christensen, N. I. (1989), Reflectivity and Seismic Properties of the Deep Continental Crust, J. Geophys. Res. 94, 17,793–17,804.Google Scholar
  9. Crampin, S. (1987), Geological and Industrial Implications of Extensive-dilatancy Anisotropy, Nature 328, 491–496.CrossRefGoogle Scholar
  10. Hale, L. D., and Thompson, G. A. (1982), The Seismic Reflection Character of the Continental Mohorovicic Discontinuity, J. Geophys. Res. 87, 4625–4635.CrossRefGoogle Scholar
  11. Holbrook, W. S., Gajewski, D., Krammer, A., and Prodehl, C. (1988), An Interpretation of Wide-angle Compressional and Shear Wave Data in Southwest Germany: Poisson’s Ratio and Petrological Implications, J. Geophys. Res. 93, 12,081–12,106.Google Scholar
  12. Hurich, C. A., and Smithson, S. B. (1987), Compositional Variation and the Origin of Deep Crustal Reflections, Earth Planet. Sci. Lett. 85, 416–426.CrossRefGoogle Scholar
  13. Kern, H., P- and S-wave velocities in crustal and mantle rocks under the simultaneous action of high confining pressure and high temperature and the effect of rock microstructure. In High-pressure Researches in Geoscience (ed. Schreyer, W.) (Schweizerbart, Stuttgart 1982) pp. 15–45.Google Scholar
  14. Kern, H., and Schenk, V. (1985), Elastic Wave Velocities in Rocks from a Lower Crustal Section in Southern Calabria (Italy), Phys. Earth Planet. Int. 40, 147–160.CrossRefGoogle Scholar
  15. Le Gall, B. (1990), Evidence of an Imbrecate Crustal Thrust Belt in the Southern British Variscides: Contributions of Southwestern Approaches Travers (SWAT) Deep Seismic Reflection Profiling Recorded through the English Channel and the Celtic Sea, Tectonics 9, 283–302.CrossRefGoogle Scholar
  16. Lüschen, E., Wenzel, F., Sandmeier, K.-J., Menges, D., Rühl, TH., Stiller, M., Janoth, W., Keller, F., Sõllner, W., Thomas, R., Krohe, A., Stenger, R., Fuchs, K., Wilhelm, H., and Eisbacher, G. (1987), Near-vertical and Wide-angle Seismic Surveys in the Black Forest, SW Germany, J. Geophys. 62, 1–30.Google Scholar
  17. Lüschen, E., Nolte, B., and Fuchs, K. (1990), Shear-wave Evidence for an Anisotropie Lower Crust Beneath the Black Forest, Southwest Germany, Tectonophysics 173, 483–493.CrossRefGoogle Scholar
  18. Matthews, D. H., Seismic reflections from the lower crust around Britain. In The Nature of the Lower Continental Crust (eds. Dawson, J. B., Carswell, D. A., Hall, J. and Wedepohl, K. H.) (Geol. Soc. London, Spec. Publ. 1986) pp. 11–21.Google Scholar
  19. McCarthy, J., and Thompson, G. (1988), Seismic Imaging of Extended Crust with Emphasis on the Western United States, Geol. Soc. Am. Bull. 100, 1361–1374.CrossRefGoogle Scholar
  20. Mooney, W., and Meissner, R., Multi-genetic origin of crustal reflectivity: A review of seismic reflection profiling of the continental crust and Moho. In Continental Lower Crust (eds. Fountain, D. M., Arculus, R., and Kay, R.) (Elsevier Science Publishers, Netherlands 1992) pp. 45–79.Google Scholar
  21. Nolte, B. (1988), Erweiterung and Anwendung des Reflektivitätsprogrammes fùr anisotrope Medien (in German), Diploma Thesis, Karlsruhe University.Google Scholar
  22. Rabbel, W., and Lüschen, E. (1996), Shear-wave Anisotropy in Laminated Lower Crust at the Urach Geothermal Anomaly, Tectonophysics 264, 219–233.Google Scholar
  23. Sandmeier, K. J., and Wenzel, F. (1986), Synthetic Seismograms for a Complex Crustal Model,Geophys. Res. Lett. 13, 22–25.CrossRefGoogle Scholar
  24. Sandmeier, K.-J., and Wenzel, F. (1990), Lower crustal petrology from wide-angle P- and S-wave measurements in the Black Forest. In Seismic Probing of Continents and their Margins (eds. Leven, J., Finlayson, D., Wright, C., Dooley, J., and Kennett, B. N. L.) Tectonophysics 173, 495–505.Google Scholar
  25. Schenk, V. (1981), Synchronous Uplift of the Lower Crust of the Ivrea Zone and of Southern Calabria and its Possible Consequence for the Hercynian Orogeny in Southern Europe, Earth Planet. Sci. Lett. 56, 305–320.CrossRefGoogle Scholar
  26. Schenk, V., The exposed crustal cross section of southern Calabria, Italy: Structure and evolution of a segment of hercynian crust. In Exposed Cross Sections of the Continental Crust (eds. Salisbury, M. and Fountain, D.) (Kluwer Academic Publishers, Netherlands 1990) pp. 21–42.CrossRefGoogle Scholar
  27. Siegesmund, S., Takeshita, T., and Kern, H. (1989), Anisotropy of v p and v s in an amphibolite of the deeper crust and its relationship to the mineralogical,microstructural and textural characteristics of the rock. In Evolution of the European Continental Crust: Deep Drilling,Geophysics, Geology and Geochemistry (eds. Meissner, R. and Gebauer, D.) Tectonophysics 157, 25–39.Google Scholar
  28. Siegesmund, S., Kruhl, J. H., and Lüschen, E. (1996), Petrophysical and Seismic Features of the Exposed Lower Continental Crust in Calabria (Italy): Field Observations versus Modelling,Geotekt. Forschungen 85, 125–163.Google Scholar
  29. Smithson, S. B., A physical model of the lower crust from North America based on seismic reflection data. In Nature of the Lower Continental Crust (eds. Dawson, J. B., Carswell, D. A., Hall, J., and Wedepohl, K. H.) (Geol. Soc. London, Spec. Publ. 1986) pp. 23–34.Google Scholar
  30. Weiss, T. (1997), Gefügeanisotropie und ihre Auswirkung auf das seismische Erscheinungsbild: Fallbeispiele aus der Lithosphäre Süddeutschlands (in German), Ph.D. Thesis, University of Göttingen.Google Scholar

Copyright information

© Springer Basel AG 1999

Authors and Affiliations

  • Melanie Pohl
    • 1
  • Friedemann Wenzel
    • 1
  • Thomas Weiss
    • 2
  • Siegfried Siegesmund
    • 2
  • Thomas Bohlen
    • 3
  • Wolfgang Rabbel
    • 3
  1. 1.Geophysical InstituteKarlsruhe UniversityKarlsruheGermany
  2. 2.Institute of Geology and Dynamics of the LithosphereGöttingen UniversityGöttingenGermany
  3. 3.Geophysical InstituteKiel UniversityKielGermany

Personalised recommendations