Seismic Velocities and Anisotropy of the Lower Continental Crust: A Review

  • T. Weiss
  • S. Siegesmund
  • W. Rabbel
  • T. Bohlen
  • M. Pohl

Abstract

Seismic anisotropy is often neglected in seismic studies of the earth’s crust. Since anisotropy is a common property of many typically deep crustal rocks, its potential contribution to solving questions of the deep crust is evaluated. The anisotropic seismic velocities obtained from laboratory measurements can be verified by computations based on the elastic constants and on numerical data pertaining to the texture of rock-forming minerals. For typical lower crustal rocks the influence of layering is significantly less important than the influence of rock texture. Surprisingly, most natural lower crustal rocks show a hexagonal type of anisotropy. Maximum anisotropy is observed for rocks with a high content of aligned mica. It seems possible to distinguish between layered intrusives and metasediments on the basis of in situ measurements of anisotropy, which can thus be used to validate different scenarios of crustal evolution.

Key words

Seismic anisotropy lower crust shear-waves Poisson’s ratio 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksandrov, K. S., and Ryzhova, T. V. (1961), The Elastic Properties of Rock forming Minerals II: Layered Silicates, lzv. Acad. Sci. USSR, Geophys. Phys. Solid Earth, 1165–1168.Google Scholar
  2. Aleksandrov, K. S., Alchikov, U. V., Belikov, B. P., Zaslavskii, B. I., and Krupnyi, A.I. (1974), Velocities of Elastic Waves in Minerals at Atmospheric Pressure and Increasing Precision of Elastic Constants by Means of EVM (in Russian), Izv. Acad. Sci. USSR. Geol. Ser. 10, 15–24.Google Scholar
  3. Arts, R. J., Rasolofosaon, P. N. J., and Zinszner, B. (1996), Experimental and theoretical tools for characterizing anisotropy due to mechanical defects in rocks under varying pore and confining pressures. In Seismic Anisotropy (eds. S. E. Fjaer, R. M. Holt and J. S. Rathore) (Society of Exploration Geophysicists, Tulsa, OK 1996) pp. 384–432.CrossRefGoogle Scholar
  4. Babuska, V. (1972), Elasticity and Anisotropy of Dunite and Bronzitite, J. Geophys. Res. 77, 35, 6955--6965.CrossRefGoogle Scholar
  5. Backus, G. E. (1962), Long-wave Elastic Anisotropy Produced by Horizontal Layering, J. Geophys. Res. 67, 4427–4440.CrossRefGoogle Scholar
  6. Barruol, G. (1993), Pétrophysique de la croûte inférieure. Rôle de l’anisotropie sismique sur la réflectivité et le déphasage des ondes S, Ph.D. Thesis, Univ. des Sciences et Techniques du Languedoc, Montpellier, 271 pp.Google Scholar
  7. Barruol, G. Mainprice, D., Kern, H., DE St. Blanquat, M., and Compte, P. (1992), 3-D Seismic Study of a Ductile Shear Zone from Laboratory and Petrofabric Data (Saint Barthelemy Massif, Northern Pyrenees, France), Terra Nova 4 (I), 63–76.CrossRefGoogle Scholar
  8. Barruol, G., and Mainprice, D. (1993), 3-D Seismic Velocities Calculated from Lattice preferred Orientation and Reflectivity of a Lower Crustal Section: Examples of the Val Sesia Section (Ivrea Zone, Northern Italy), Geophys. J. Int. 115 (3), 1169–1188.CrossRefGoogle Scholar
  9. Barruol, G., and Kern, H. (1996), Seismic anisotropy and shear-wave splitting in lower-crustal and upper-mantle rocks from the Ivrea Zone; experimental and calculated data. In Dynamics of the Subcontinental Mantle, from Seismic Anisotropy to Mountain Building (eds. Mainprice, D. and Vauchez, A.), Phys. Earth Planet. Int. 95, 3–4, 175–194.Google Scholar
  10. Belikov, B. P., Aleksandrov, K. S., and Ryzhova, T. V. (1970), Elastic Properties of Rock forming Minerals and Rocks; with Appended Tables of the Elastic Constants of the Principal Types of Rocks (in Russian), Izd. Nauka (Akad. Nauk SSSR, Inst. Geol. Rud. Mestorozhd. Petrogr. Mineral. Geokhim.Sib. Otd., Inst. Fiz.), 276.Google Scholar
  11. Bertolani, M. (1968), La petrografia della Valle Strona (Alpi occidentali italiane), Schweiz. Min. Petrogr. Mitt. 48, 695–732.Google Scholar
  12. Birch, F. (1960), The Velocity of Compressional Waves in Rocks to 10 kilobars; Part 1, J. Geophys. Res. 65, 1083–1102.CrossRefGoogle Scholar
  13. Birch, F. (1961), The Velocity of Compressional Waves in Rocks to 10 kilobars; Part 2, J. Geophys. Res. 66, 2199–2224.CrossRefGoogle Scholar
  14. Bohlen, T., Rabbel, W., Weiss, T., Siegesmund, S., and Pohl, M. (1999), Recovering Shear Wave Anisotropy of the Lower Crust: The Influence of Systematic Errors of Traveltime Inversion, Pure appl. geophys. 156, 123–138.CrossRefGoogle Scholar
  15. Bunge, H. J., Siegesmund, S., Skrotzki, W., and Weber, K., Textures of Geological Materials (DGM Informationsgesellschaft Verlag 1994) 399 pp.Google Scholar
  16. Burlini, L. (1994), A Model for the Calculation of the Seismic Properties of Geologic Units, Surv. in Geoph. 15, 593–617.CrossRefGoogle Scholar
  17. Burlini, L., and Fountain, D. M. (1993), Seismic Anisotropy of Metapelites from the Ivrea-Verbano Zone and Serie dei Laghi (Northern Italy), Phys. Earth Planet. Int. 78 (3–4). 301–317.CrossRefGoogle Scholar
  18. BÜTtgenbach, B. (1990), Uber die Schärfe von Fehlerabschätzungen bei der numerischen Lösung von Randwertproblemen durch Differenzenverfahren, Ph.D. Thesis, Tech. Univ. Aachen.Google Scholar
  19. Carbonell, R., and Smithson, S. B. (1991), Large-scale Anisotropy within the Crust in the Basin and Range Province, Geology 19, 698–701.CrossRefGoogle Scholar
  20. Christensen, N. I., and Crosson, R. S. (1968), Seismic Anisotropy in the Upper Mantle, Tectonophysics 6 (2), 93–107.CrossRefGoogle Scholar
  21. Dornbusch, J. (1995), Wage-, Mikrostruktur-and Texturuntersuchungen an Hoch temperatur-Scherzonen in granulitfaziellen Metabasiten der Ivrea-Zone, Geotekt. Forsch. 83, 94 pp.Google Scholar
  22. Fountain, D. M., and Christensen, N. I. (1989), Composition of the continental crust and upper mantle; a review. In Geophysical Framework of the Continental United States (eds. Pakiser, L. C. and Mooney, W. D.) (Memoir, Geological Society of America, 172) pp. 711–742.Google Scholar
  23. Frisillo, A. L., and Barsch, G. R. (1972), Measurement of Single-crystal Elastic Constants of Bronzite as a Function of Pressure and Temperature, J. Geophys. Res. 77, 6360–6368.CrossRefGoogle Scholar
  24. Gajewski, D., Holbrook, W. S., and Prodehl, C. (1987), A Three-dimensional Crustal Model of Southwest Germany Derived from Seismic Refraction Data, Tectonophysics 142 (1), 49–70.CrossRefGoogle Scholar
  25. Garuti, G., Rivalenti, G., Rossi, A., and Sinigoi, S. (1979), Mineral Equilibria as Geotectonic Indicators in the Ultramafics and Related Rocks of the Ivrea-Verbano Basic Complex (Italian Western Alps): Pyroxenes and Olivine, Proc. 2nd Symp. Ivrea-Verbano Mem. Soc. Geol. Ital. 33, 147–160.Google Scholar
  26. Holbrook, W. S., Mooney, W. D., and Christensen, N. I., The seismic velocity structure of the deep continental crust. In The Continental Lower Crust (eds. Fountain, D. M., Arculus, R. and Kay, R. W.), Developments in Geotectonics 23 (Elsevier, Amsterdam 1992) pp. 1–34.Google Scholar
  27. Jahns, E., Rabbel, W., and Siegesmund, S. (1996), Quantified Seismic Anisotropy at Different Scales: A Case Study from the KTB Crustal Segment, Zeitschrift für Geologische Wissenschaften 24, 729–740.Google Scholar
  28. Jech, J. (1991), Computation of Elastic Parameters of Anisotropic Medium from Traveltimes of Quasi-compressional Waves, Phys. Earth Planet. Int. 66, 153–159.CrossRefGoogle Scholar
  29. Jones, T., and Nur, A. (1984), The Nature of Seismic Reflections from Deep Crustal Fault Zones, J. Geophys. Res. 89, 3153–3171.CrossRefGoogle Scholar
  30. Kern, H., and Tubia, J. M. (1993), Pressure and Temperature Dependence of P- and S-wave Velocities, Seismic Anisotropy and Density of Sheared Rocks from the Sierra Alpujata Massif (Ronda Peridotites, Southern Spain), Earth Planet. Sci. Lett. 119 (1–2), 191–205.CrossRefGoogle Scholar
  31. Klima, K. (1973), The Computation of the Elastic Constants of an Anisotropic Medium from the Velocities of Body Wares, Stud. Geoph. Geodet. 17, 115–132.CrossRefGoogle Scholar
  32. Klima, K., and Kluhanek, O. (1968), Quantitative Correlation between Preferred Orientation of Grains and Elastic Anisotropy of Marbel, IEEE Geosci. Electronics, GE-6, 139 pp.Google Scholar
  33. Kumazawa, M., and Anderson, O.L. (1969), Elastic Moduli, Pressure Derivatives and Temperature Derivatives of Single-crystal Olivine and Single-crystal Forsterite, J. Geophys. Res. 74, 5311–5320.CrossRefGoogle Scholar
  34. Levien, L., Weidner, D. J., and Prewitt, C. T. (1979), Elasticity of Diopside, Phys. and Chem. Of Min. 4 (2), 105–113.CrossRefGoogle Scholar
  35. Löschen, E., Nolte, B., and Fuchs, K. (1990), Shear-wave Evidence for an Anisotropic Lower Crust beneath the Black Forest, Southwest Germany, Tectonophysics 173, 483–493.CrossRefGoogle Scholar
  36. Löschen, E., Nicolich, R., Cernobori, L., Fuchs, K., Kern, H., Kruhl, J., Persoglia, S., Romanelli, M., Schenk, V., Siegesmund, S., and Tortorici, L. (1992), A Seismic Reflection-refraction Experiment across the Exposed Lower crust in Calabria (Southern Italy): First Results, Terra Nova 4, 77–86.CrossRefGoogle Scholar
  37. Mainprice, D., and Humbert, M. (1993), Methods of calculating petrophysical properties from lattice-preferred orientation data. In Seismic Properties of Crustal and Mantle Rocks; Laboratory Measurements and Theotetical Calculations (ed. Burlini, L.), Surveys in Geophysics 15 (5), 575–592.Google Scholar
  38. Manghnani, M. H., Ramananantoandro, R., and Clark, S. P. (1974), Compressional and Shear-wave Velocities in Granulite Facies Rocks and Eclogites to 10 kb, J. Geophys. Res. 79 (35), 5427–5446.CrossRefGoogle Scholar
  39. Meissner, R. (1967), Zum Aufbau der Erdkruste Ergebnisse der Weitwinkelmessungen im bayrischen Molassebecken, Gerl. Beitr. Geophys. 76, 241–254.Google Scholar
  40. Pohl, M., Wenzel, F., Weiss, T., Siegesmund, S., Bohlen, T., and Rabbel, W. (1999), Realistic Models of Anisotropic Laminated Lower Crust, Pure appl. geophys. 156, 139–155.CrossRefGoogle Scholar
  41. Popp, T., and Kern, H. (1994), The Influence of Dry and Water-saturated Cracks on Seismic Velocities of Crustal Rocks A Comparison of Experimental Data with Theoretical Model, Surveys in Geophysics 15, 443–465.CrossRefGoogle Scholar
  42. Quick, J. E., Sinigoi, S., and Mayer, A. (1994), Emplacement Dynamics of a Large Mafic Intrusion in the Lower Crust, Ivrea-Verbano Zone, Northern Italy, J. Geophys. Res. 11, 21,559–21,573.Google Scholar
  43. Rabbel, W., and Löschen, E. (1996). Shear-wave Anisotropy of Laminated Lower Crust at the Urach Geothermal Anomaly, Tectonophysics 264, 219–233.CrossRefGoogle Scholar
  44. Rabbel, W., Siegesmund, S., Weiss, T., Pohl, M. and Bohlen, T. (1998), Shear-wave Anisotropy of Laminated Lower Crust beneath Urach (SW Germany) -A Comparison with Exposed Lower Crustal Sections, Tectonophysics 298, 337–356.CrossRefGoogle Scholar
  45. Reston, T. J. (1987), Spatial interference, reflection character and the structure of the lower crust under extension; results 2-D seismic modelling. In The Lower Continental Crust (Annales Geophysicae, Series B: Terrestrial and Planetary Physics 5(4)) pp. 339–347.Google Scholar
  46. Rivalenti, G., Garuti, G., and Rossi, A. (1975), The Origin of the Ivrea-Verbano Basic Formation (Western Italian Alps) Whole Rock Geochemistry, Boll. Soc. Geol. Ital. 94, 1149–1186.Google Scholar
  47. Rivalenti, G., Garuti, G., Rossi, A., Siena, F., and Sinigoi, S. (1981), Existence of Different Peridotite Types and of a Layered Igneous Complex in the Ivrea Zone of the Western Alps, J. Petrology 22 (1), 127–153.Google Scholar
  48. Rivalenti, G., Rossi, A., Siena, F., and Sinigoi, S. (1984), The Layered Series of the Ivrea Verbano Igneous Complex, Western Alps, Italy, Tscherm. Mineral. Petrogr. Mitt. 33, 77–99.CrossRefGoogle Scholar
  49. Rudnick, R. L., and Fountain, D. M. (1995), Nature and Composition of the Continental Crust: A Lower Crustal Perspective, Rev. Geophys. 33 (3), 267–309.CrossRefGoogle Scholar
  50. Rutter, E. H., Brodie, K. H., and Evans, P. J. (1993), Structural Geometry, Lower Crustal Magmatic Underplating and Lithospheric Stretching in the Ivrea-Verbano Zone, Northern Italy, J. Struct. Geol. 15 (3–5), 647–662.CrossRefGoogle Scholar
  51. Schenk, V. (1980), U-Pb and Rb-Sr Radiometric Dates and their Correlation with Metamorphic Events in the Granulite-facies Basement of the Serre, Southern Calabria (Italy), Contrib. Mineral. Petrol. 73, 23–38.CrossRefGoogle Scholar
  52. Schenk, V. (1984), Petrology of Felsic Granulites, Metapelites, Metabasics, Ultramafics and Metacarbonates from Southern Calabria (Italy): Prograde Metamorphism, Uplift and Cooling of a Former Lower Crust, J. Petrol. 25, 255–298.Google Scholar
  53. Schön, J. H., Physical Properties of Rocks: Fundamentals and Principles of Petrophysics (Pergamon Press 1996).Google Scholar
  54. Schönberg, M. E., and Muir, F. (1989), A Calculus for Finely Layered Anisotropie Media, Geophys. 54 (5), 581–589.CrossRefGoogle Scholar
  55. Seront, B., Mainprice, D. M., and Christensen, N. I. (1993), A Determination of the Three-dimensional Seismic Properties of Anorthosite; Comparison between Values Calculated from the Petrofabric and Direct Laboratory Measurements, J. Geophys. Res. 98 (B), 2209–2221.CrossRefGoogle Scholar
  56. Shapiro, S. A., and Hubral, P. (1996), Elastic Waves in Finely Layered Sediments: The Equivalent Medium and Generalized O’Doherty-Anstey Formulas, Geophys. 61 (5), 1282–1300.CrossRefGoogle Scholar
  57. Siegesmund, S. (1996), The Significance of Rock Fabrics for the Geological Interpretation of Geophysical Anisotropies, Geotekt. Forsch. 85, 1–123.Google Scholar
  58. Siegesmund, S., Takeshita, T., and Kern, H. (1989), Anisotropy of V r and V, in an Amphibolite of the Deeper Crust and its Relationship to the Mineralogical Microstructural and Textural Characteristics of the Rock, Tectonophysics 157, 25–38.CrossRefGoogle Scholar
  59. Siegesmund, S., Fritsche, M., and Braun, G. (1991), Reflectivity caused by texture-induced anisotropy in mylonites. In Continental Lithosphere; Deep Seismic Reflections (eds. Meissner, R. O., Brown, L. D., Duerbaum, H. J., Franke, W., Fuchs, K. and Seifert, F.), Geodynamics Series 22, 291–298.CrossRefGoogle Scholar
  60. Siegesmund, S., and Dahms, M., Fabric-controlled anisotropy of elastic, magnetic and thermal properties. In Textures of Geological Materials (eds. Bunge, H. J., Siegesmund, S., Skrotzki, W. and Weber, K.) (DGM Informationsgesellschaft Verlag 1994) pp. 353–379.Google Scholar
  61. Siegesmund, S., Helmig, K., and Kruse, R. (1994), Complete Texture Analysis of a Deformed Amphibolite: Comparison between Neutron Diffraction and U-stage Data, J. Struct. Geol. 16, 131–142.CrossRefGoogle Scholar
  62. Siegesmund, S., Kruhl, J. H., and Lüschen, E. (1996), Petrophysical and Seismic Features of the Exposed Lower Continental Crust in Calabria (Italy): Field Observation versus Modelling, Geotekt. Forsch. 85, 125–163.Google Scholar
  63. Tobhill, Siegesmund, S., and Bass, J. D. (1999), Elasticity of Cordierite, Phys. Chem. Min. 26, 333–343.CrossRefGoogle Scholar
  64. Vaughan, M. T., and Weidner, D. J. (1978), The Relationship of Elasticity and Crystal Structure in Andalusite and Sillimanite, Phys. Chem. Min. 3, 133–144.CrossRefGoogle Scholar
  65. Voigt, W., Lehrbuch der Kristallphysik (Teubner, Leipzig 1928).Google Scholar
  66. Voshage, H., Hofmann, A. W., Mazzucchelli, M., Rivalenti, G., Sinigoi, S., Raczek, I., and Demarchi, G. (1990), Isotopic Evidence from the Ivrea Zone for a Hybrid Lower Crust Formed by Magmatic Underplating, Nature 347, 731–736.CrossRefGoogle Scholar
  67. Weiss, T. (1998), Gefügeanisotropie and ihre Auswirkung auf das seismische Erscheinungsbild: Fallbeispiele aus der Lithosphäre Silddeutschlands, Geot. Forschungen 91, 1–156.Google Scholar

Copyright information

© Springer Basel AG 1999

Authors and Affiliations

  • T. Weiss
    • 1
  • S. Siegesmund
    • 1
    • 2
  • W. Rabbel
    • 3
  • T. Bohlen
    • 3
  • M. Pohl
    • 4
  1. 1.Institut für Geologie und Dynamik der LithosphäreGöttingenGermany
  2. 2.Geologisch-Paläontologisches InstitutBaselSwitzerland
  3. 3.Institut für GeowissenschaftenAbteilung GeophysikKielGermany
  4. 4.Geophysikalisches InstitutKarlsruheGermany

Personalised recommendations