Advertisement

Amphora pp 315-358 | Cite as

The Babylonian Cellar Text BM 85200 + VAT 6599 Retranslation and Analysis

  • Jens Høyrup

Abstract

In a number of earlier publications, I have proposed a new understanding of the Old Babylonian mathematical technique known as “algebra„, concentrating on problems of the second and to some extent of the first degree.1 As a background to the following investigation of a particular text dealing in part with problems of the third degree I shall need a summary of my methods and my main results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Baqir 1950]
    Baqir, Taha: An Important Mathematical Problem Text from Tell Harmal. Sumer 6 (1950), 39–54.MathSciNetGoogle Scholar
  2. [Chemla 1991]
    Chemla, Karine: Theoretical Aspects of the Chinese Algorithmic Tradition (first to third centuries). Preprint, to appear in Historia Scientiarum.Google Scholar
  3. [Gandz 1937]
    Gandz, Solomon: The Origin and Development of the Quadratic Equations in Babylonian, Greek, and Early Arabic Algebra. Osiris 3 (1937), 405–557.CrossRefGoogle Scholar
  4. [Gandz 1939]
    Gandz, Solomon: Studies in Babylonian Mathematics II. Conflicting Interpretations of Babylonian Mathematics. Isis 31 (1939), 405–425.MathSciNetCrossRefGoogle Scholar
  5. [Gandz 1948]
    Gandz, Solomon: Studies in Babylonian Mathematics I. Indeterminate Analysis in Babylonian Mathematics. Osiris 8 (1948), 12–40.MathSciNetCrossRefGoogle Scholar
  6. [Høyrup 1985]
    Høyrup, Jens: Babylonian Algebra from the View-Point of Geometrical Heuristics. An Investigation of Terminology, Methods, and Patterns of Thought. Second, slightly Corrected Printing. Roskilde: Roskilde University Centre, Institute of Educational Research, Media Studies and Theory of Science, 1985.Google Scholar
  7. [Høyrup 1989]
    Høyrup, Jens: Zur Frühgeschichte algebraischer Denkweisen. Mathematische Semesterberichte 36 (1989), 1–46.MathSciNetGoogle Scholar
  8. [HØyrup 1990]
    Høyrup, Jens: Algebra and Naive Geometry. An Investigation of Some Basic Aspects of Old Babylonian Mathematical Thought. Altorientalische Forschungen 17 (1990), 27–69, 262–354.Google Scholar
  9. [Høyrup 1990a]
    Høyrup, Jens: Dynamis, the Babylonians, and Theaetetus 147c7–14d7. Historia Mathematica 17 (1990), 201–222.MathSciNetCrossRefGoogle Scholar
  10. [Høyrup 1991]
    Høyrup, Jens: Changing Trends in the Historiography of Mesopotamian Mathematics. Revised Contribution to the Conference Contemporary Trends in the Historiography of Science, Corfu, May 27 — June 1, 1991. Filosofi og Videnskabsteori på Roskilde Universitetscenter. 3. Række: Preprints og Reprints 1991 nr. 3.Google Scholar
  11. [HØyrup 1992]
    Høyrup, Jens: On Subtractive Operations, Subtractive Numbers, and Purportedly Negative Numbers in Old Babylonian Mathematics. To be published in: Zeitschrift für Assyriologie und Vorderasiatische Archäologie.Google Scholar
  12. [MCT]
    Neugebauer, O., & A. Sachs: Mathematical Cuneiform Texts. (American Oriental Series, vol. 29). New Haven, Connecticut: American Oriental Society, 1945.zbMATHGoogle Scholar
  13. [MEA]
    René Labat: Manuel d’épigraphie akkadienne (signes, syllabaire, idéogrammes). 4e édition. Paris: Imprimerie Nationale, 1963.Google Scholar
  14. [MKT]
    O. Neugebauer: Mathematische Keilschrift-Texte. I–III. (Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abteilung A: Quellen. 3. Band, erster-dritter Teil). Berlin: Julius Springer, 1935, 1935, 1937. Reprint Berlin etc.: Springer, 1973.zbMATHGoogle Scholar
  15. [Rawi/Roaf 1984]
    Rawi, Farouk N. H. al-, & Michael Roaf: Ten Old Babylonian Mathematical Problem Texts from Tell Haddad, Himrin. Sumer 43 (1984, printed 1987), 195–218.Google Scholar
  16. [Th.-D. 1936]
    Thureau-Dangin, F.: Notes sur la mathématique babylonienne. Revue d’Assyriologie 33 (1936), 180–184.Google Scholar
  17. [Th.-D. 1937]
    Thureau-Dangin, F.: Notes sur la mathématique babylonienne. Revue d’Assyriologie 34 (1937), 9–28.Google Scholar
  18. [Th.-D. 1940]
    Thureau-Dangin, F.: Notes sur la mathématique babylonienne. Revue d’Assyriologie 37 (1940), 1–10.Google Scholar
  19. [TMB]
    Thureau-Dangin, F.: Textes mathématiques babyloniens. (Ex Oriente Lux, Deel 1). Leiden: Brill, 1938.Google Scholar
  20. [TMS]
    E. M. Bruins & M. Rutten: Textes mathématiques de Suse. (Mémoires de la Mission Archéologique en Iran, XXXIV). Paris: Paul Geuthner, 1961.zbMATHGoogle Scholar
  21. [v.d. Waerden 1962] van der Waerden, B. L.: Science Awakening. 2nd Edition. Groningen: Noordhoff, 1962.Google Scholar
  22. [Vogel 1934]
    Vogel, Kurt: Kubische Gleichungen bei den Babyloniern? Sitzungsberichte der Bayerischen Akademie der Wissenschaften zu München. Mathematisch-Naturwissenschaftliche Abteilung 1934, 87–94.Google Scholar

Copyright information

© Springer Basel AG 1992

Authors and Affiliations

  • Jens Høyrup

There are no affiliations available

Personalised recommendations