Water relations and alleviation of drought stress in mycorrhizal plants

  • M. Sánchez-Díaz
  • M. Honrubia


Changes in water relations and increased mineral uptake have been the two major reported effects of arbuscular mycorrhizal infection on host plants (Cooper, 1984; Safir, 1987). Some authors have suggested that mycorrhizas may be even more important to plant growth under dry conditions than when soil moisture is plentiful (Allen and Allen, 1986; Nelsen, 1987; Sánchez-Díaz et al., 1990). However, the mechanisms whereby mycorrhizas may increase host drought resistance have not been elucidated. One problem is to distinguish between nutritional advantages and those conferred by improved water uptake. Another important cosideration is that mechanisms which contribute to improved plant water and nutritional status, do not necessarily increase drought tolerance (Nelsen, 1987).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, M.F. (1982) Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis (H. B.K.) lag ex Steud. New Phytol 91: 191–196.CrossRefGoogle Scholar
  2. Allen, M.F. (1991) The Ecology of Mycorrhizae. Cambridge University Press.Google Scholar
  3. Allen, E.B. and Allen, M.F. (1986) Water relations of xeric grasses in the field: interactions of mycorrhizas and competition. New Phytol. 104: 559–571.CrossRefGoogle Scholar
  4. Allen, M.F. and Allen, E.B. (1992) Development of mycorrhizal patches in a succesional arid ecosystem. In: D.J. Read, D.H. Lewis, A.H. Fitter and I.J. Alexander (eds) Mycorrhizas in Ecosystems. Cambridge: CAB International, pp. 164–170.Google Scholar
  5. Allen, M.F., MacMahon, A. and Anderson, D.C. (1984) Reestablishment of Endogonales on Mount St. Helens: survival of residuals. Mycologia 76:1031–1038.CrossRefGoogle Scholar
  6. Allen, M.F., Moore, T.S. Jr. and Christensen, M. (1980) Phytohormone changes in Bouteloua gracilis by vesicular-arbuscular mycorrhizae. I. Cytokinin increases in the host plant. Can J. Bot. 58: 371–374.CrossRefGoogle Scholar
  7. Allen, M.F., Moore, T.S. Jr. and Christensen, M. (1982) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. II. Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J. Bot. 60: 468–471.CrossRefGoogle Scholar
  8. Augé, R.M. and Duan, X. (1991) Mycorrhizal fungi and non hydraulic root signals of soil drying. Plant Physiol. 97:821–824.PubMedCrossRefGoogle Scholar
  9. Augé, R.M., Schekel, K.A. and Wample, R.L. (1986a) Greater leaf conductance of well-watered VA mycorrhizal rose plants is not related to phosphorus nutrition. New Phytol. 103: 107–116.CrossRefGoogle Scholar
  10. Augé, R.M., Schekel, K.A. and Wample, R.L. (1986b) Osmotic adjustment in leaves of VA mycorrhizal and non mycorrhizal rose plants in response to drought stress. Plant Physiol 82: 765–770.PubMedCrossRefGoogle Scholar
  11. Ayres, P.G. and West, H.M. (1993) Stress responses in plants infected by pathogenic and mutualistic fungi. In: L. Fowden, T. Mansfield and J. Stoddart (eds) Plant Adaptation to Environmental Stress. London: Chapman and Hall, pp. 295–311.Google Scholar
  12. Barea, J.M. (1991) Vesicular-arbuscular mycorrhizae as modifiers of soil fertility. In: Advances in Soil Science. New York: Springer-Verlag, pp. 1–40.CrossRefGoogle Scholar
  13. Barea, J.M., Azcón, R. and Azcón-Aguilar, C. (1993) Mycorrhiza and crops. In: Advances in Plant Pathology. Academic Press Limited pp. 167–189.Google Scholar
  14. Bethlenfalvay, G.J., Brown, M.S., Ames, R.N. and Thomas, R.S. (1988) Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiol. Plant 72: 565–571.CrossRefGoogle Scholar
  15. Bethlenfalvay, G J. and Linderman, R.G. (eds.) (1992): Mycorrhizae in Sustainable Agriculture. Proceedings of a symposium sponsored by the Soil Science Society of America, American Society of Agronomy and the Crop Science Society of America. Madison, Wisconsin.Google Scholar
  16. Bildusas, I.J., Dixon, R.K., Plfeger, F.L. and Stewart, E.L. (1986) Growth, nutrition and gas exchange of Bromus inermis inoculated with Glomus fasciculatum. New Phytol. 102: 303–311.CrossRefGoogle Scholar
  17. Cooper, K.M. (1984) Physiology of VA mycorrhizal associations. In: C. Powell and J. Bagyaraj (eds) VA Mycorrhiza. Boca Raton: CRC Press, pp. 155–186.Google Scholar
  18. Daniels Hetrick, B.A. (1984) Ecology of VA mycorrhizal fungi. In: C. Powell and J. Bagyaraj (eds) VA Mycorrhiza. Boca Raton: CRC Press, pp. 35–55.Google Scholar
  19. Danneberg, G., Latus, C., Zimmer, W., Hundeshagen, B., Schneider-Poetsch, H.J. and Bothe, H. (1992) Influence of vesicular-arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.). J. Plant Physiol. 141: 33–39.CrossRefGoogle Scholar
  20. Davies, F.T. Jr., Potter, J.R. and Linderman, R.G. (1992) Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and nutrient content. J Plant Physiol. 139: 289–294.CrossRefGoogle Scholar
  21. Díaz, G. and Honrubia, M. (1994) A mycorrhizal survey of plants growing on mine wastes in Southeast Spain. Arid Soil Research and Rehabilitation 8: 59–68.Google Scholar
  22. Díaz, G. and Honrubia, M. (1993a) Notes on Glomales from Spanish semiarid lands. Nova Hedwigia 57:159–168.Google Scholar
  23. Díaz, G. and Honrubia, M. (1993b) Respuestas de crecimiento del albardín (Lygeum spartum L.) a la inoculación con hongos micorrícicos y a la fertilización fosforada. Cryptogamie, Mycologie 14(2): 117–125.Google Scholar
  24. Díaz, G. and Honrubia, M. (1993c) Arbuscular mycorrhizae on Tetraclinis articulata (Cupressaceae): development of mycorrhizal colonization and effect of fertilization and inoculation. Agronomie 13: 267–274.CrossRefGoogle Scholar
  25. Dixon, R.K., Garret, H.E. and Cox, G.S. (1985) Cytokinins in leaves of mycorrhizal citrus. In: Molina, R. (editor). Proceedings 6th North American Conference on Mycorrhizae. Forest Research Laboratory, Oregon State University Corvallis.Google Scholar
  26. Dixon, R.K., Garret, H.E. and Cox, G.S. (1988) Cytokinins in the root pressure exudate of Citrus jambhiri Lush. colonized by vesicular-arbuscular mycorrhiza. Tree Physiol. 4:9–18.PubMedCrossRefGoogle Scholar
  27. Dodd, J.C. and Krikun, J. (1984) Observations on endogonaceous spores in Negev desert. Trans. Br. Mycol. Soc. 82: 536–540.CrossRefGoogle Scholar
  28. Drüge, U. and Schönbeck, F. (1992) Effect of vesicular-arbuscular mycorrhizal infection on transpiration, photosynthesis and growth of flax (Linum usitatissimum L.) in relation to cytokinin levels. J. Plant. Physiol. 141: 40–48.CrossRefGoogle Scholar
  29. Edriss, M.H., Davis, R.M. and Burger, D.W. (1984) Influence of mycorrhizal fungi on cytokinin production in sour orange. J. Am. Soc. Hortic. Sci. 109: 587–590.Google Scholar
  30. Ellis, J.R., Larsen, H.J. and Boosalis, M.G. (1985) Drought resistance of wheat plants inoculated with vesicular-arbuscular mycorrhizae. Plant and Soil 86: 369–378.CrossRefGoogle Scholar
  31. Fitter, A.H. (1986) Effect of benomyl on leaf phosphorus concentration in alpine grasslands: a test for mycorrhizal benefit. New Phytol. 103: 767–776.CrossRefGoogle Scholar
  32. Fitter, A.H. (1985) Functioning of vesicular-arbuscular mycorrhizas under field conditions. New Phytol. 99: 257–265.CrossRefGoogle Scholar
  33. Fitter, A.H. (1988) Water relations of red clover Trifolium pratense L. as affected by VA mycorrhizal infection and phosphorus supply before and during drought. J. Exp. Bot. 39: 595–603.CrossRefGoogle Scholar
  34. George, E., Häussier, K., Kothari, S.K., Li, X.L. and Marschner, M. (1992) Contribution of mycorrhizal hyphae to nutrient and water uptake of plants. In: D.J. Read, D.H. Lewis, A.H. Fitter and I.J. Alexander (eds) Mycorrhizas in Ecosystems. Cambridge: CAB International, pp. 42–47.Google Scholar
  35. Giovannetti, M. (1985) Seasonal variations of vesicular-arbuscular and endogonaceous spores in maritime sand dunes. Trans. Br. Mycol. Soc. 84: 678–684.CrossRefGoogle Scholar
  36. Hardie, K. (1985) The effect of removal of extraradical hyphae on water uptake by vesicular-arbuscular mycorrhizal plants. New Phytol. 101: 677–684.CrossRefGoogle Scholar
  37. Hayman, D.S. (1983) The physiology of vesicular-arbuscular endomycorrhizal symbiosis. Can J Bot 61: 944–963.CrossRefGoogle Scholar
  38. Ho, I. (1987) Vesicular-arbuscular mycorrhizae of halophytic grasses in the Alvord desert of Oregon. Northwest Science 61: 148–151.Google Scholar
  39. Horsfall, J.G. and Cowling, E.B. (1978) Plant Disease. III. How Plants Suffer from Disease. New York: Academic Press.Google Scholar
  40. Huang, R.S., Smith, W.K. and Yost, R.S. (1985) Influence of vesicular-arbuscular mycorrhiza on growth, water relations and leaf orientation in Leucaena leucocephala (Lam) de Wit. New Phytol. 99: 229–243.CrossRefGoogle Scholar
  41. Kothari, S.K., Marschner, H. and George, E. (1990) Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytol. 116: 303–311.CrossRefGoogle Scholar
  42. Levy, Y. and Krikun, J. (1980) Effect of vesicular-arbuscular mycorrhiza on Citrus jambhiri water relations. New Phytol. 85:25–32.CrossRefGoogle Scholar
  43. López-Sánchez, E., Díaz, G. and Honrubia, M. (1992) Influence of vesicular-arbuscular mycorrhizal infection and P addition on growth and P nutrition of Anthyllis cytisoides L. and Brachypodium retusum (Pers.) Beauv Mycorrhiza 2:41–45.CrossRefGoogle Scholar
  44. López-Sánchez, E. and Honrubia, M. (1992) Seasonal variation of vesicular-arbuscular mycorrhizal in eroded soils from Southern Spain. Mycorrhiza 2: 33–39.CrossRefGoogle Scholar
  45. Miller, R.M. (1978) Some occurrences of vesicular-arbuscular mycorrhizae in natural and disturbed ecosystems of the Red Desert. Can. J. Bot. 57: 619–623.CrossRefGoogle Scholar
  46. Miller, R.M., Moorman, T.B. and Schmidt, S.K. (1993) Interspecific plant association effects on vesicular-arbuscular mycorrhiza occurence in Atriplex confertifolia. New Phytol. 95: 241–246.CrossRefGoogle Scholar
  47. Molina-Niñirola, C., Cano, A., Honrubia, M., Díaz, G. and Torres, P. Estudios sobre la ecología de micorrizas en el semiárido del Sudeste español. Unpublished data.Google Scholar
  48. Nelsen, C.R. and Safir, G.R. (1982) Increased drought tolerance of mycorrhizal onion plants caused by improved phosphorus nutrition. Planta 154: 407–413.CrossRefGoogle Scholar
  49. Nelsen, C.H.E. (1987) The water relations of vesicular-arbuscular mycorrhizal systems. In: Safir, G.R. (editor): Ecophysiology of VA Mycorrhizal Plants. Boca Raton: CRC Press, pp. 71–91.Google Scholar
  50. Peña, J.I., Sánchez-Díaz, M., Aguirreolea, J. and Becana, M. (1988) Increased stress tolerance of nodule activity in the Medicago-Rhizobium-Glomus symbiosis under drought. J. Plant Physiol. 133: 79–83.CrossRefGoogle Scholar
  51. Rabatin, S.C. (1979) Seasonal and edaphic variation in vesicular-arbuscular mycorrhizal infection of grasses by Glomus tenuis. New Phytol. 83: 95–102.CrossRefGoogle Scholar
  52. Radin, J.W. (1984) Stomatal responses to water stress and to abscisic acid in phosphorus-deficient cotton plants. Plant Physiol. 76:392–394.PubMedCrossRefGoogle Scholar
  53. Radin, J.W. and Eidenbock, M.P. (1986) Carbon accumulation during photosynthesis in leaves of nitrogen-and phosphorus-stressed cotton. Plant Physiol. 82: 869–871.PubMedCrossRefGoogle Scholar
  54. Read, D.J. (1991) Mycorrhizas in ecosystems. Experientia 47: 376–391.CrossRefGoogle Scholar
  55. Read, D.J. (1992) The mycorrhizal mycelium. In: Allen, M.F., (editor): Mycorrhizal Functioning. An Integrative Plant-fungal Process. New York: Chapman and Hall, pp. 102–133.Google Scholar
  56. Read, D.J. and Boyd, R. (1986) Water relations of mycorrhizal fungi and their host plants. In: Ayres, P., Boddy, L., (eds) Water, Fungi and Plants. Cambridge: Cambridge University Press, pp. 287–303.Google Scholar
  57. Reeves, F.B., Wagner, D., Moorman, T. and Kiel, J. (1979) The role of endomycorrhizae in revegetation practices in the semi-arid west. I. A comparison of incidence of mycorrhizae in severely disturbed natural environments. Am. J. Bot. 66: 6–13.CrossRefGoogle Scholar
  58. Roldán-Fajardo, B.E. (1985) Micorrizas VA en cultivos arbóreos: almendro, naranjo y olivo. (Ph D. Thesis). 258 pp. Granada: Univ. of Granada.Google Scholar
  59. Safir, G.R. (1987) Ecophysiology of VA Mycorrhizal Plants. Boca Raton: CRC Press.Google Scholar
  60. Safir, G.R., Boyer, J.S. and Gerdemann, J.W. (1971) Mycorrhizal enhancement of water transport in soybean. Science 172: 581–583.PubMedCrossRefGoogle Scholar
  61. Safir, G.R., Boyer, J.S. and Gerdemann, J.W. (1972) Nutrient status and mycorrhizal enhancement of water transport in soybean. Plant Physiol. 49: 700–703.PubMedCrossRefGoogle Scholar
  62. Salamanca, P. (1991) Estudio sobre la simbiosis microbio-planta (micorrizas y Rhizobium-leguminosas) en la revegetación de suelos en zonas áridas. (Ph D Thesis) 170 pp. Granada: Univ. of Granada.Google Scholar
  63. Sánchez-Díaz, M., Pardo, M., Antolín, M., Peña, J. and Aguirreolea, J. (1990) Effect of water stress on photosynthetic activity in the Medicago-Rhizobium-Glomus symbiosis. Plant Science 71: 215–221.CrossRefGoogle Scholar
  64. Sweatt, M.R. and Davies, F.T. Jr. (1984) Mycorrhizae, water relations, growth and nutrient uptake of geraniums grown under moderately high phosphorus regimes. J. Amer. Soc. Hort. Sci. 109: 210–213.Google Scholar
  65. Sylvia, D.M., Hammond, L.C., Bennett, J.M., Haas, J.A. and Linda, S.B. (1993) Field response of maize to a VAM fungus and water management. Agron. J. 85: 193–198.CrossRefGoogle Scholar
  66. Sylvia, D.M. and Williams, S.E. (1992) Vesicular-arbuscular mycorrhizal and environmental stress. In: G.J. Bethlenfalvay, R.G. Linderman (eds) Mycorrhizae in Sustainable Agriculture, pp. 101–124.Google Scholar
  67. Tissera, P. and Ayres, P.G. (1988) Hydraulic conductance and anatomy of roots of Vicia faba L plants infected by Uromyces viciae-fabae (Pers.) Shroet. Physiol. Mol. Plant Pathol. 32: 192–207.CrossRefGoogle Scholar
  68. Weins, J.A. (1977) On competition and variable environments. American Scientist 65: 590–597.Google Scholar
  69. White, J.A., De Puit, E.J., Smith, J.L. and Williams, S.E. (1992) Vesicular-arbuscular mycorrhizal fungi and irrigated mined land reclamation in Southwestern Wyoming. Soil Sci. Soc. Am. J. 56: 1466–1471.CrossRefGoogle Scholar
  70. Zhang, J. and Davies, W J. (1989) Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant Cell Environ. 12: 73–81.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1994

Authors and Affiliations

  • M. Sánchez-Díaz
    • 1
  • M. Honrubia
    • 2
  1. 1.Departamento de Fisiología VegetalUniversidad de NavarraPamplonaSpain
  2. 2.Departamento de Biología Vegetal, Laboratorio de Micología, Facultad de Biología, Campus de EspinardoUniversidad de MurciaMurciaSpain

Personalised recommendations