Estimates for Pseudo-differential and Hyperbolic Differential Equations via Fourier Integrals with Complex Phases

  • Michael Ruzhansky
Conference paper
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 141)


In this paper we present LP and LP— Lq estimates for solutions of the Cauchy problem for some classes of pseudo-differential equations. First, we give estimates for operators with simple complex characteristic roots with non-negative imaginary parts. This class contains general strictly hyperbolic equations with variable coefficients. Then, we give sharp estimates for strictly hyperbolic differential operators with time dependent coefficients. The analysis is based on the corresponding LP and LP— Lq properties of Fourier integral operators with complex phase functions, which are also presented.


Cauchy Problem Phase Function Hyperbolic Equation Fourier Integral Operator Lipschitz Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Beals, LP boundedness of Fourier integrals, Mem. Amer. Math. Soc., 264 (1982).Google Scholar
  2. [2]
    Y. Colin de Verdière, M. Frisch, Régularité Lipschitzienne et solutions de l’équation des ondes sur une viriété Riemannienne compacte, Ann. Scient. Ecole Norm. Sup., 9 (1976), 539–565.zbMATHGoogle Scholar
  3. [3]
    J.J. Duistermaat, Fourier integral operators, Birkhäuser, Boston, 1996.zbMATHGoogle Scholar
  4. [4]
    L. Hörmander, L 2 estimates for Fourier integral operators with complex phase . Ark. för Matematik. 21, 283–307 (1983).zbMATHCrossRefGoogle Scholar
  5. [5]
    L. Hörmander, The analysis of linear partial differential operators. Vols. III-IV,Springer-Verlag, New York, Berlin, 1985.Google Scholar
  6. [6]
    A. Laptev, Yu. Safarov and D. Vassiliev, On global representation of Lagrangian distributions and solutions of hyperbolic equations. Comm. Pure Appl. Math. 47, 1411–1456 (1994).MathSciNetzbMATHGoogle Scholar
  7. [7]
    W. Littman, LP-L 9 -estimates for singular integral operators,Proc. Symp. Pure and Appl. Math. A.M.S., 23 (1973) 479–481.MathSciNetGoogle Scholar
  8. [8]
    A. Melin and J. Sjöstrand, Fourier integral operators with complex-valued phase functions. Springer Lecture Notes. 459, 120–223 (1975).Google Scholar
  9. [9]
    A. Melin and J. Sjöstrand,Fourier integral operators with complex phase functions and parametrix for an interior boundary problem.Comm Partial Differential Equations 1, 313–400 (1976).MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    A. Miyachi, On some estimates for the wave operator in LP and HP, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27 (1980), 331–354.MathSciNetzbMATHGoogle Scholar
  11. [11]
    J. Peral, LP estimates for the wave equation, J. Funct. Anal., 36 (1980), 114–145.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    D.H. Phong, Regularity of Fourier integral operators, Proc. Int. Congress Math., 862–874 (1994), Zürich, Switzerland.Google Scholar
  13. [13]
    M. Reissig and K. Yagdjian, One application of Floquet’s theory to L p -L, estimates for hyperbolic equations with very fast oscillations, Math. Meth. Appl. Sci., 22 (1999), 937–951.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    M. Reissig and K. Yagdjian, Klein-Gordon type decay rates for wave equations with time-dependent coefficients,Preprint, Univ. of Tsukuba, 1999.Google Scholar
  15. [15]
    M. Reissig and K. Yagdjian,L pL q decay estimates for the solutions of strictly hyperbolic equations of second order with increasing in time coefficients, to appear in Math. Nachr.,214(2000).Google Scholar
  16. [16]
    M. Ruzhansky,Analytic Fourier integral operators,Monge-Ampère equation and holomorphic factorization, Arch. Mat.,7268–76 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    M. Ruzhansky, Holomorphic factorization for the solution operators for hyperbolic equations, Int. Series of Num. Math.,130803–811 (1999).MathSciNetGoogle Scholar
  18. [18]
    M. Ruzhansky,On the sharpness of Seeger-Sogge-Stein orders, Hokkaido Math. J.,28357–362 (1999).MathSciNetzbMATHGoogle Scholar
  19. [19]
    M. Ruzhansky,Singularities of affine fibrations in the regularity theory of Fourier integral operators, Russian Math. Surveys,5599–170 (2000).MathSciNetzbMATHGoogle Scholar
  20. [20]
    M Ruzhansky, Sharp estimates for a class of hyperbolic partial differential operators, Results in Math., to appear.Google Scholar
  21. [21]
    M. Ruzhansky, Regularity of Fourier integral operators with complex phase functions, to appear.Google Scholar
  22. [22]
    M. Ruzhansky, Regularity theory of Fourier integral operators with complex phases and singularities of affine fibrations, CWI Tracts, to appear.Google Scholar
  23. [23]
    Yu. Safarov and D. Vassiliev, The Asymptotic Distribution of Eigenvalues of Partial Differential Operators, Transl. of Math. Monographs, 155, AMS, 1997.Google Scholar
  24. [24]
    A. Seeger, C.D. Sogge and E.M. Stein, Regularity properties of Fourier integral operators, Ann.of Math., 134 (1991), 231–251.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    C.D. Sogge, Fourier integrals in classical analysis, Cambridge University Press, 1993.CrossRefGoogle Scholar
  26. [26]
    E. M. Stein, LP boundedness of certain convolution operators,Bull. Amer. Math. Soc., 77 (1971), 404–405.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    E.M. Stein, Harmonic analysis, Princeton University Press, Princeton, 1993.zbMATHGoogle Scholar
  28. [28]
    M. Sugimoto, On some LP -estimates for hyperbolic equations, Arkiv för Matematik, 30 (1992), 149–162.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    M. Sugimoto, A priori estimates for higher order hyperbolic equations, Math. Z., 215 (1994), 519–531.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    M. Sugimoto, Estimates for hyperbolic equations with non-convex characteristics, Math. Z., 222 (1996), 521–531.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    M. Sugimoto, Estimates for hyperbolic equations of space dimension 3, J. Funct. Anal., 160 (1998), 382–407.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    F. Treves,Introduction to pseudo-differential and Fourier integral operators,IIPlenum Press, 1982.Google Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Michael Ruzhansky
    • 1
  1. 1.Department of Mathematics, Imperial CollegeUniversity of LondonLondonUnited Kingdom

Personalised recommendations