Clotting factors VIII and IX

  • George G. Brownlee
  • Paul L. F. Giangrande
Part of the Milestones in Drug Therapy book series (MDT)


Haemophilia is the most common congenital disorder of coagulation and affects approximately 1 in 10,000 males around the world. Haemophilia A is due to a deficiency of factor VIII in the circulating blood whilst haemophilia B (also known as Christmas disease) is a clinically identical disorder caused by factor IX deficiency. It is less common than haemophilia A and affects 1 in about 30,000 males. Both factors VIII and IX are essential glycoproteins in the clotting cascade [1] (Fig. 1). The hallmark of severe haemophilia is recurrent and spontaneous haemarthrosis, typically affecting the hinge joints such as the ankle, knee and elbow. The severity of bleeding depends upon the level of factor in the blood.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gailani D, Broze GJ (1991) Factor IX activation in a revised model of blood coagulation.Science253: 909–912PubMedCrossRefGoogle Scholar
  2. 2.
    Larsson SA (1985) Life expectancy of Swedish haemophiliacs 1831–1980.Brit J Haematol59: 593–602CrossRefGoogle Scholar
  3. 3.
    Giannelli F, Choo KH, Rees DJG, Boyd Y, Rizza CR, Brownlee GG (1983) Gene deletions in patients with haemophilia B and anti-factor IX antibodies.Nature303: 181–182PubMedCrossRefGoogle Scholar
  4. 4.
    Schwaab R, Brackmann HH, Meyer C, Seehafer J, Kirchgesser M, Haack A, Olek K, Tuddenham EGD, Oldenburg J (1995) Haemophilia A: mutation type determines risk of inhibitor formation.Thromb Haemost74: 1402–1406PubMedGoogle Scholar
  5. 5.
    Antonarakis SE, Rossiter JP, Young M, Horst J, de Moerloose P, Sommer SS, Ketterling RP, Kazazian HH, Negrier C, Vinciguerra C et al (1995) Factor VIII gene inversions in severe hemophilia A: results of an international consortium study.Blood86: 2206–2212PubMedGoogle Scholar
  6. 6.
    Green PM, Giannelli F, Sommer SS, Poon M-C, Ludwig M, Schwaab R, Reitsma PH, Goossens M, Yoshioka A, Figueiredo MS et al (2000) Haemophilia B: database of point mutations and short additions and deletions-v9.0 Google Scholar
  7. 7.
    Naylor JA, Green PM, Rizza CR, Giannelli F (1993) Analysis of factor VIII messenger RNA reveals defects in every one of 28 haemophilia A patients.Hum Mol Genet2: 11–17PubMedCrossRefGoogle Scholar
  8. 8.
    Rowley G, Saad S, Giannelli F, Green PM (1995) Ultrarapid mutation detection by multiplex, solid-phase chemical cleavage.Genomics30: 574–582PubMedCrossRefGoogle Scholar
  9. 9.
    Tuddenham EGD (1994) Flip tip inversion and haemophilia A.Lancet342: 307–308CrossRefGoogle Scholar
  10. 10.
    Kemball-Cook G, Tuddenham EGD, Wacey AI (1999) Haemophilia A mutation database Google Scholar
  11. 11.
    Giannelli F, Green PM, Sommer SS, Poon M-C, Ludwig M, Schwaab R, Reitsma PH, Goossens M, Yoshioka A, Figueiredo MS et al (1998) Haemophilia B: database of point mutations and short additions and deletions: eighth edition.Nucl Acid Res26: 265–268CrossRefGoogle Scholar
  12. 12.
    Taylor SAM, Dutfin J, Cameron C, Teitel J, Garvey B, Lillicrap DP (1992) Characterization of the original Christmas disease mutation (cysteine 206 ¡ªf serine): from clinical recognition to molecular pathogenesis.Thromb Haemost67: 63–65PubMedGoogle Scholar
  13. 13.
    Morgan GE, Rowley G, Green PM, Chisholm M, Giannelli F, Brownlee GG (1997) Further evidence for the importance of an androgen response element in the factor IX promoter.Brit J Haematol98: 79–85CrossRefGoogle Scholar
  14. 14.
    Biggs R (1967) Thirty years of haemophilia treatment in Oxford.Brit J Haematol13: 452–463CrossRefGoogle Scholar
  15. 15.
    Rosendaal FR, Varekamp I, Smit C, Brocker-Vriends AHJT, van Dijck H, Vandenbroucke JP, Hermans J, Suurmeijer TPBM, Briet E (1989) Mortality and causes of death in Dutch haemophiliacs 1972–86.Brit J Haematol71: 71–76CrossRefGoogle Scholar
  16. 16.
    Darby SC, Ewart DW, Giangrande PLF, Dolin PJ, Spooner RJD, Rizza CR on behalf of the UKHaemophilia Centre Directors’ Organization (1995) Mortality before and after HIV infection in the complete UK population of haemophiliacs.Nature377: 79–82PubMedCrossRefGoogle Scholar
  17. 17.
    Darby SC, Ewart DW, Giangrande PLF, Spooner RJD, Rizza CR, Dusheiko GM, Lee CA, Ludlam CA, Preston FE, for the UK Haemophilia Centre Directors’ Organization (1997) Mortality from liver cancer and liver disease in haemophilic men and boys in UK given blood products contaminated with hepatitis C.Lancet350: 1425–1431PubMedCrossRefGoogle Scholar
  18. 18.
    Lee CA, Ironside JW, Bell JE, Giangrande PLF, Ludlam CA, Esiri MM, McLaughlin JE (1998) Retrospective neuropathological review of prion disease in UK haemophilic patients.Thromb Haemost80: 909–911PubMedGoogle Scholar
  19. 19.
    Katayama K, Ericsson LH, Enfield DL, Walsh KA, Neurath H, Davie EW, Titani K (1979) Comparison of amino acid sequence of bovine coagulation factor IX (Christmas factor) with that of other vitamin K-dependent plasma proteins.Proc Natl Acad Sci USA76: 4990–4994PubMedCrossRefGoogle Scholar
  20. 20.
    Proudfoot NJ, Brownlee GG (1974) Sequence at the 3’ end of globin mRNA shows homology with immunoglobulin light chain mRNA.Nature252: 359–362PubMedCrossRefGoogle Scholar
  21. 21.
    Winter G, Fields S, Gait MJ, Brownlee GG (1981) The use of synthetic oligodeoxynucleotide primers in cloning and sequencing segment 8 of influenza virus A/PR/8/34.Nucl Acid Res9: 237–245CrossRefGoogle Scholar
  22. 22.
    Fields S, Winter G, Brownlee GG (1981) Structure of the neuraminidase gene in human influenza virus A/PR/8/34.Nature290: 213–217PubMedCrossRefGoogle Scholar
  23. 23.
    Choo KH, Gould KG, Rees DJG, Brownlee GG (1982) Molecular cloning of the gene for human antihaemophilic factor IX.Nature299: 178–180PubMedCrossRefGoogle Scholar
  24. 24.
    Wallace RB, Johnson MJ, Hirose T, Miyake T, Kawashima EH, Itakura K (1981) The use of synthetic oligonucleotides as hybridization probes: II. Hybridization of oligonucleotides of mixed sequence to rabbit (l-globin DNA.Nucl Acid Res9: 879–898CrossRefGoogle Scholar
  25. 25.
    Kurachi K, Davie EW (1982) Isolation and characterization of a cDNA coding for human factor IX.Proc Natl Acad Sci USA79: 6461–6464PubMedCrossRefGoogle Scholar
  26. 26.
    Jaye M, de la Salle H, Schamber F, Balland A, Kohli V, Findeli A, Tolstoshev P, Lecocq J-P (1983) Isolation of a human anti-haemophilic factor IX cDNA clone using a unique 52-base synthetic oligonucleotide probe derived from the amino acid sequence of bovine factor IX.Nucl Acid Res11: 2325–2335CrossRefGoogle Scholar
  27. 27.
    Anson DS, Choo KH, Rees DJG, Giannelli F, Gould K, Huddleston JA, Brownlee GG (1984) Gene structure of human anti-haemophilic factor IX.EMBO J3: 1053–1064PubMedGoogle Scholar
  28. 28.
    Yoshitake S, Schach BG, Foster DC, Davie EW, Kurachi K (1985) Nucleotide sequence of the gene for human factor IX (antihemophilic factor B).Biochemistry24: 3736–3750PubMedCrossRefGoogle Scholar
  29. 29.
    Bentley AK, Rees DJG, Rizza C, Brownlee GG (1986) Defective propeptide processing of blood clotting factor IX caused by mutation of arginine to glutamine at position-4.Cell45: 343–348PubMedCrossRefGoogle Scholar
  30. 30.
    Anson DS, Austen DEG, Brownlee GG (1985) Expression of active human clotting factor IX from recombinant DNA clones in mammalian cells.Nature315: 683–685PubMedCrossRefGoogle Scholar
  31. 31.
    Anson DS, Brownlee GG, Jones IM (1992) Factor IX preparations uncontaminated by plasma components or poxvirus.US patent no.5,171,569Google Scholar
  32. 32.
    Busby S, Kumar A, Joseph M, Halfpap L, Insley M, Berkner K, Kurachi K, Woodbury R (1985) Expression of active human factor IX in transfected cells.Nature316: 271–273PubMedCrossRefGoogle Scholar
  33. 33.
    de la Salle H, Altenburger W, Elkaim R, Dott K, Dieterle A, Drillien R, Cazenave J-P, Tolstoshev P, Lecocq J-P (1985) Active y-carboxylated human factor IX expressed using recombinant DNA techniques.Nature316: 268–270PubMedCrossRefGoogle Scholar
  34. 34.
    Kaufman RJ, Wasley LC, Furie BC, Furie B, Shoemaker CB (1986) Expression, purification and characterization of recombinant y-carboxylated factor IX synthesized in chinese hamster ovary cells.J Biol Chem261: 9622–9628PubMedGoogle Scholar
  35. 35.
    Rehemtulla A, Roth DA, Wasley LC, Kuliopulos A, Walsh CT, Furie B, Furie BC, Kaufman RJ (1993) In vitro and in vivo functional characterization of bovine vitamin K-dependent ‘y-carboxylase expressed in chinese hamster ovary cells.Proc Natl Acad Sci USA90: 4611–4615PubMedCrossRefGoogle Scholar
  36. 36.
    Wasley LC, Rehemtulla A, Bristol JA, Kaufman RJ (1993) PACE/furin can process the vitamin K-dependent pro-factor IX precursor within the secretory pathway.J Biol Chem268: 8458–8465PubMedGoogle Scholar
  37. 37.
    White GC, Beebe A, Nielsen B (1997) Recombinant factor IX.Thromb Haemost78: 261–265PubMedGoogle Scholar
  38. 38.
    Gillis S, Furie BC, Furie B, Patel H, Huberty MC, Switzer M, Foster WB, Scoble HA, Bond MD (1997) y-Carboxyglutamic acids 36 and 40 do not contribute to human factor IX function.Protein Sci6: 185–196PubMedCrossRefGoogle Scholar
  39. 39.
    Brownlee GG, Rizza C (1984) Clotting factor VIII cloned.Nature312: 307PubMedCrossRefGoogle Scholar
  40. 40.
    Wood WI, Capon DJ, Simonsen CC, Eaton DL, Gitschier J, Keyt B, Seeburg PH, Smith DH, Hollingshead P, Wion KL et al (1984) Expression of active human factor VIII from recombinant DNA clones.Nature312: 330–337PubMedCrossRefGoogle Scholar
  41. 41.
    Toole JJ, Knopf JL, Wozney JM, Sultzman LA, Buecker JL, Pittman DD, Kaufman RJ, Brown E, Shoemaker C, Orr EC et al (1984) Molecular cloning of a eDNA encoding human antihaemophilic factor.Nature312: 342–347PubMedCrossRefGoogle Scholar
  42. 42.
    Pipe SW, Morris JA, Shah J, Kaufman R (1998) Differential interaction of coagulation factor VIII and factor V with protein chaperones calnexin and calreticulin.Proc Nall Acad Sci USA273: 8537–8544Google Scholar
  43. 43.
    Kaufman RJ, Wasley LC, Darner AJ (1988) Synthesis, processing and secretion of recombinant factor VIII expressed in mammalian cells.J Biol Chem263: 6352–6362PubMedGoogle Scholar
  44. 44.
    Kaufman RJ, Wasley LC, Davies MV, Wise RJ, Israel DI, Dorner AJ (1989) Effect of von Willebrand factor coexpression on the synthesis and secretion of factor VIII in chinese hamster ovary cells.Mol Cell Biol9: 1233–1242PubMedGoogle Scholar
  45. 45.
    Kaufman RJ (1992) Expression and structure-function properties of recombinant factor VIII.Transfos Med Rev6: 235–246CrossRefGoogle Scholar
  46. 46.
    Gomperts E, Lundblad R, Adamson R (1992) The manufacturing process of recombinant factor VIII, Recombinate.Transfos Med Rev6: 247–251CrossRefGoogle Scholar
  47. 47.
    Chan SY, Lembach KJ (1991) Genetic characterization of recombinbant BHK-21 cells expressing factor VIII.Semin Hematol28: 10–16PubMedGoogle Scholar
  48. 48.
    Klein U (1991) Production and characterization of recombinant factor VIII.Semin Hematol28: 17–21PubMedGoogle Scholar
  49. 49.
    Berntop E (1997) Second generation, B-domain deleted recombinant factor VIII.Thromb Haemost78: 256–265Google Scholar
  50. 50.
    Toole JJ, Pittman DD, Orr EC, Murtha P, Wasley LC, Kaufman R (1986) A large region (c 95 kDa) of human factor VIII is dispensable forin vitroprocoagulant activity.Proc Nad Acad Sci USA83: 5939–5942CrossRefGoogle Scholar
  51. 51.
    Andersson L-O, Forsman N, Huang K, Larsen K, Lundin A, Pavlu B, Sandberg H, Sewerin K, Smart J (1986) Isolation and characterization of human factor VIII: Molecular forms in commercial factor VIII concentrate, cryoprecipitate, and plasma.Proc Nail Acad Sci USA83: 2979–2983CrossRefGoogle Scholar
  52. 52.
    Eaton DL, Wood WI, Eaton D, Hass PE, Hollingshead P, Wion K, Mather J, Lawn RM, Wehar GA, Gorman C (1986) Construction and characterization of an active factor VIII variant lacking the central one-third of the molecule.Biochemistry25: 8343–8347PubMedCrossRefGoogle Scholar
  53. 53.
    Lind P, Larsson K, Spira J, Sydow-Backman M, Almstedt A, Gray E, Sandberg H (1995) Novel forms of B-domain-deleted recombinant factor VIII molecules. Construction and biochemical characterization.Eur J Biochem232: 19–27PubMedCrossRefGoogle Scholar
  54. 54.
    Lusher J, Ingerslev J, Roberts H, Hedner U (1998) Clinical experience with recombinant factor Vila.Blood Coagulai Fibrinolys9: 119–128CrossRefGoogle Scholar
  55. 55.
    Warder I, Ewenstein BM, Koerper MA, Shapiro A, Key N, Dimichele D, Miller RT, Pasi J, Rivard GE, Sommer SS et al (1996) Factor IX inhibitors and anaphylaxis in haemophilia B.Haemophilia2: 239–260Google Scholar
  56. 56.
    Key NS, Aledort LM, Beardsley D, Cooper HA, Davignon G, Ewenstein BM, Gilchrist GS, Gill JC, Glader B, Hoots WK et al (1998) Home treatment of mild to moderate bleeding episodes using recombinant factor VIIa (Novoseven) in haemophiliacs with inhibitors.Thromb Haemost80: 912–918PubMedGoogle Scholar
  57. 57.
    Shapiro AD, Gilchrist GS, Hoots WK, Cooper HA, Gastineau DA (1998) Prospective, randomised trial of two doses of rVIIa (NovoSeven) in haemophilia patients with inhibitors undergoing surgery.Thromb Haemost80: 773–778PubMedGoogle Scholar
  58. 58.
    Lusher JM, Arkin S, Abildgaard CF, Schwartz RS (1993) Recombinant factor VIII for the treatment of previously untreated patients with haemophilia.N Engl J Med328: 453–459PubMedCrossRefGoogle Scholar
  59. 59.
    Bray GL, Gomperts ED, Courter S, Gordon EM, Manco-Johnson M, Shapiro A, Scheibel E, White G, Lee M (1994) A multicenter study of recombinant factor VIII (Recombinate): safety, efficacy, and inhibitor risk in previously untreated patients with haemophilia.Blood83: 2428–2435PubMedGoogle Scholar
  60. 60.
    Rothschild C, Laudan Y, Satre EP, Borel Derlon A, Chambost H, Moreau P, Goudemand J (1998) French previously untreated patients with severe haemophilia A after exposure to recombinant factor VIII: incidence of inhibitor and evaluation of immune tolerance.Thromb Haemost80: 779–783PubMedGoogle Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • George G. Brownlee
    • 1
  • Paul L. F. Giangrande
    • 2
  1. 1.Chemical Pathology Unit, Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
  2. 2.Oxford Haemophilia CentreThe Churchill HospitalOxfordUK

Personalised recommendations