Moduli of Abelian Varieties pp 417-440

Part of the Progress in Mathematics book series (PM, volume 195)

Newton Polygon Strata in the Moduli Space of Abelian Varieties

  • Frans Oort


We considerp-divisible groups (also called Barsotti-Tate groups) in characteristicpabelian varieties, their deformations, and we draw some conclusions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C.-L. Chai - Every ordinary symplectic isoyeny class in positive characteristic is dense in the moduli. Invent. Math. 121 (1995), 439–479.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    C.-L. Chai & F. Oort - [Still in preparation.]Google Scholar
  3. [3]
    G. van der Geer - Cycles on the moduli space of abelian varieties. In: Moduli of curves and abelian varieties (The Dutch intercity seminar on moduli) (Eds. C. Faber & E. Looijenga), Asp. Math. E 33, Vieweg 1999; pp. 65–89.Google Scholar
  4. [4]
    A. Grothendieck & J. Dieudonne - Elements de geometric algebrigue. Ch. HP: Etude cohomologique des faisceaux coherents. Publ. Math. 11, IHES 1961.Google Scholar
  5. [5]
    A. Grothendieck - Groupes de Barsotti-Tate et cristaux de Dieudonne. Sem. Math. Sup. Univ. Montreal. Presses Univ. Montreal, 1974.Google Scholar
  6. [6]
    A. J. de Jong - Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic. Invent. Math. 134 (1998), pp. 301–333.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    A. J. de Jong - Crystalline Dieudonne module theory via formal rigid geometry. Publ. Math. IHES 82 (1995), 5–96.MATHGoogle Scholar
  8. [8]
    A. J. de Jong & F. Oort - Purity of the stratification by Newton polygons. Journ. A.M.S. 13 (2000), 209–241.MATHGoogle Scholar
  9. [9]
    N. M. Katz - Serre-Tate local moduli. In: Surfaces algebriques (Sem. de geom. algebr. d’Orsay 1976–78). Lect. Notes Math. 868, Springer - Verlag 1981; Exp. V-bis, pp. 138–202.Google Scholar
  10. [10]
    N. M. Katz - Slope filtrations of F-crystals. Journ. Geom. Alg. Rennes, Vol. I, Asterisque 63, Soc.Math. France, 1979.Google Scholar
  11. [11]
    K.-Z. Li & F. Oort - Moduli of supersingular abelian varieties. Lect. Notes Math. 1680, Springer - Verlag, 1998.Google Scholar
  12. [12]
    Yu. I. Manin - The theory of commutative formal groups over fields of finite characteristic. Usp. Math. 18 (1963), 3–90; Russ. Math. Surveys 18 (1963), 1–80.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    D. Mumford - Geometric invariant theory. Ergebn. Math., Neue Folge, Bd. 34, Springer - Verlag, 1965.MATHCrossRefGoogle Scholar
  14. [14]
    P. Norman - An algorithm for computing local moduli of abelian varieties. Ann. Math. 101 (1975), 499–509.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    P. Norman & F. Oort - Moduli of abelian varieties. Ann. Math. 112 (1980), 413–439.MathSciNetMATHGoogle Scholar
  16. [16]
    T. Oda & F. Oort - Supersingular abelian varieties. Proceed. Intl. Symp. on Algebraic Geometry (Ed. M. Nagata), Kyoto 1977, Kinokuniya, 1978; pp. 595–621.Google Scholar
  17. [17]
    F. Oort - Moduli of abelian varieties and Newton polygons. C. R. Acad. Sci. Paris 312 (1991), 385–389.MathSciNetMATHGoogle Scholar
  18. [18]
    F. Oort - Newton polygons and formal groups: conjectures by Manin and Grothendieck. [To appear Ann. Math.]Google Scholar
  19. [19]
    T. Zink - The display of a formal p-divisible group, University of Bielefeld, Preprint 98–017, February 1998.Google Scholar
  20. [20]
    T. Zink - A Dieudonne theory for p-divisible groups. Manuscript, 23 pp., September 1998.Google Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Frans Oort

There are no affiliations available

Personalised recommendations