Moduli of Abelian Varieties pp 345-416

Part of the Progress in Mathematics book series (PM, volume 195)

A Stratification of a Moduli Space of Abelian Varieties

  • Frans Oort


In this paper we study the moduli space A0 Fp of polarized abelian varieties of dimensiongin positive characteristic. We construct a stratification of this space. The strata are indexed by isomorphism classes of group schemes killed byp;a polarized abelian variety (X, A) has its moduli point in a certain stratum if X [p] belongs to the isomorphism class given by a certain discrete invariant. We define these invariants by a numerical property of a filtration ofN= X [p].Passing from one stratum to a stratum in its boundary feels like “degenerating the p-structure”. The fact that these strata are all quasi-affine allows us to keep going in this process until we arrive at the unique zero-dimensional stratum, the superspecial locus. One can formulate this idea by saying that the ordinary locus has several “boundaries”, one where the abelian variety degenerates, one where the p-structure “becomes more special” (and an analogous idea for all non-zero-dimensional strata). This phenomenon, non-present in this form in characteristic zero, but available and powerful in positive characteristic, is ex-pected to have many applications.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C.-L. Chai-Compactification of Siegel moduli schemes. London Math. Soc. Lect. Notes Ser. 107, Cambridge Univ. Press, 1985.Google Scholar
  2. [2]
    C.-L. Chai-Everyordinary symplectic isogeny class in positive characteristic is dense in the moduli.Invent. Math.121(1995), 439–479.MathSciNetMATHGoogle Scholar
  3. [3]
    C.-L. Chai & F. Oort -Density of Hecke orbits.[In preparation.]Google Scholar
  4. [4]
    P. Deligne&M. Rapoport -Les schemes de modules de courbes elliptiques.In: Modular functions of one variable, II (Ed.P.Deligne, W. Kuyk), Lect. Notes Math. 349, Springer-Verlag 1973; pp. 143–316 (pp. DeRa 1–174).CrossRefGoogle Scholar
  5. [5]
    M. Demazure-Lectures on p-divisible groups. Lect. Notes Math. 302, Springer-Verlag, 1972.Google Scholar
  6. [6]
    J. Dieudonne -Lie groups and Lie hyperalgebras over a field of characteristic p.II. Amer. Journ. Math.77(1955), 218–244.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    M. Eichler -Zur Zahlentheorie der Quaternionen-Algebren.J. Reine Angew. Math.195(1955), 127–151.MathSciNetGoogle Scholar
  8. [8]
    T. Ekedahl -On supersingular curves and abelian varieties.Math. Scand.60(1987), 151–178.MathSciNetMATHGoogle Scholar
  9. [9]
    G. Faltings -Arithmetische Kompaktifizierung des Modulraums der abelschen Varietdten.Arbeitstagung Bonn 1984(Ed.F. Hirzebruchet al.)Lect. Notes Math1111Springer-Verlag, 1985.Google Scholar
  10. [10]
    G. Faltings&C.-L. Chai-Degeneration of abelian varieties. Ergebn. Math. 3. Folge, Bd. 22, Springer-Verlag, 1990.Google Scholar
  11. [11]
    G. van der Geer -Cycles on the moduli space of abelian varieties.In: Moduli of curves and abelian varieties (the Dutch intercity seminar on moduli) (Eds C. Faber, E. Looijenga). Aspects of Math. E 33, Vieweg 1999; pp. 65–89.CrossRefGoogle Scholar
  12. [12]
    G. van der Geer & M. van der Vlugt -On the existence of supersingular curves of given genus.Journ. reine angew. Math.45(1995), 53–61.Google Scholar
  13. [13]
    E. Z. Goren & F. Oort -Stratification of Hilbert modular varieties I.Journ. Algebraic Geom.9(2000), 111–154.MathSciNetMATHGoogle Scholar
  14. [14]
    A. Grothendieck -Fondements de la geornetrie algebrique.[Extraits du Seminaire Bourbaki 1957–1962.] Exp. 212, Sem. Bourbaki13(1960/1961):Preschemas quotients. Google Scholar
  15. [15]
    A. Grothendieck&J. Dieudonne -Elements de geometric algebrique.Vol. II: Etude globale elementaire de quelques classes de morphismes. Vol. III1: Etude cohomologique des faisceaux coherents (Premiere Partie). Publ. Math.8, 11Inst. Hautes Et. Sc. 1961, 1961 [Cited as EGA II, EGA III]Google Scholar
  16. [16]
    H. Hasse & E. Witt -Zyklische unverzweigte Erweiterungskorper vom Primzahlgrade p iiber einem algebraischen Funktionenkorper der Charakteristik p.Monatsh. Math. Phys.43(1963), 477–492.Google Scholar
  17. [17]
    L. Illusie -Deformations de groupes de B ars otti- Tate. Exp.VI in: Seminaire sur les pinceaux arithmetiques: la conjecture de Mordell (Ed. L. Szpiro), Asterisque 127, Soc. Math. France, 1985.Google Scholar
  18. [18]
    A. J. de Jong -Finite locally free group schemes in characteristic p and Dieudonne modules. Invent. Math.114(1993), 89–137.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    A. J. de Jong & F. Oort -Purity of the stratification by Newton polygons.Journ. A.M.S. 13 (2000), 209–241. See: Scholar
  20. [20]
    T. Katsura & F. Oort -Families of supersingular abelian surfaces.Compos. Mat. 62 (1987), 107–167.MathSciNetMATHGoogle Scholar
  21. [21]
    T. Katsura & F. Oort-Supersingular abelian varieties of dimension two or three and class numbers. Algebraic Geometry, Sendai 1985 (ed. T. Oda); Adv. St. Pure Math. 10 (1987), Kinokuniya & North-Holland, 1987.Google Scholar
  22. [22]
    N. Katz -Serre-Tate local moduli.Exp. Vbis in: Surfaces algebriques, Sem. Geom. Alg. Orsay 1976–78 (Ed. J. Giraud, L. Illusie and M. Raynaud), Lect. Notes Math. 868, Springer-Verlag 1981, pp. 138–202.Google Scholar
  23. [23]
    N. M. Katz -Slope filtrations of F-crystals.Journ. Geom. Algebr. de Rennes, Vol. I; Asterisque 63, Soc. Math. France, 1979; pp. 113–163.MATHGoogle Scholar
  24. [24]
    M. Kneser-Strong approximation. Proceed. Sympos. Pure Math., Vol. 9: Algebraic groups and discontinuous subgroups. A.M.S. 1966.Google Scholar
  25. [25]
    M.-A. Knus-Quadratic and hermitian forms over rings. Grundl. math. Wissensch. 294, Springer-Verlag 1991.Google Scholar
  26. [26]
    M.-A. Knus, A. Merkurjev, M. Rost & J.-P. Tignol -The book of involutions.AMS Colloq. Publ. 44, Amer. Math. Soc. 1998.Google Scholar
  27. [27]
    H.-P. Kraft -Kommutative algebraische p-Gruppen (mit anwendungen auf p-divisible Gruppen and abelsche Varietiiten).Sonderforsch. Bereich Bonn, September 1975. Ms. 86 pp.Google Scholar
  28. [28]
    H.-P. Kraft & F. Oort -Finite group schemes annihilated by p.[In preparation.]Google Scholar
  29. [29]
    K.-Z. Li & F. Oort-Moduli of supersingular abelian varieties. Lecture Notes Math. 1680, Springer-Verlag 1998.Google Scholar
  30. [30]
    J. Lubin, J-P. Serre&J. Tate - Elliptic curves and formal groups. In: Lect. Notes, Summer Inst. Algebraic Geometry, Woods Hole, July 1964; 9 pp.Google Scholar
  31. [31]
    Yu. I. Manin -The theory of commutative formal groups over fields of finite characteristic.Usp. Math. 18 (1963), 3–90; Russ. Math. Surveys 18 (1963), 1–80.MathSciNetMATHGoogle Scholar
  32. [32]
    W. Messing - The crystals associated to Barsotti-Tate groups: with applications to abelian schemes. Lect. Notes Math. 264, Springer-Verlag 1972.Google Scholar
  33. [33]
    B. Moonen -Group schemes with additional structures and Weyl group cosets.This volume, pp. 255–298.Google Scholar
  34. [34]
    L. Moret-Bailly -Familles de courbes at de varietes abeliennes surP1.Familles de courbes et de varietes abeliennes.Sem. sur les pinceaux de courbes de genre aux moins deux. Ed. L. Szpiro. Asterisque 86, Soc. Math. France, 1981; pp. 109–140.Google Scholar
  35. [35]
    L. Moret-Bailly-Pinceaux de varietes abeliennnes. Asterisque 129, Soc. Math. France, 1985.Google Scholar
  36. [36]
    D. Mumford - Constructions of deformation of Dieudonne modules. Private communication, 1968.Google Scholar
  37. [37]
    D. Mumford-Abelian varieties. Tata Inst. Fund. Res. & Oxford Univ. Press, 1970 (2nd print. 1974).Google Scholar
  38. [38]
    P. Norman - Analgorithm for computing local moduli of abelian varieties.Ann. Math. 101 (1975), 499–509.MathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    P. Norman & F. Oort -Moduli of abelian varieties.Ann. Math. 112 (1980), 413–439.MathSciNetMATHCrossRefGoogle Scholar
  40. [40]
    T. Oda -The first de Rham cohomology group and Dieudonne modules.Ann. Sc. Ecole Norm. Sup. 2 (1969), 63–135.MathSciNetMATHGoogle Scholar
  41. [41]
    A. Ogus -Supersingular KS crystals.In: Journ. Geom. Algebr. de Rennes, Vol II; Asterisque 64, Soc. Math. France, 1979; pp. 3–86.MathSciNetMATHGoogle Scholar
  42. [42]
    F. Oort-Commutative group schemes. Lect. Notes Math. 15, Springer-Verlag 1966.Google Scholar
  43. [43]
    F. Oort -Subvarieties of moduli spaces.Invent. Math. 24 (1974), 95–119.MathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    F. Oort -Which abelian surfaces are products of elliptic curves?Math. Ann. 214 (1975), 35–47.MathSciNetMATHCrossRefGoogle Scholar
  45. [45]
    F. Oort-Astratification of moduli spaces of polarized abelian varieties in positive characteristic.In: Moduli of curves and abelian varieties (the Dutch intercity seminar on moduli) (Eds C. Faber, E. Looijenga). Aspects of Math. E 33, Vieweg 1999; pp. 47–64.CrossRefGoogle Scholar
  46. [46]
    F. Oort- Newton polygons and formal groups: conjectures by Manin and Grothendieck.[To appear: Ann. Math. 152 (2000).Google Scholar
  47. [47]
    F. Oort-Newton polygon strata in the moduli space of abelian varieties.This volume, pp. 417–440.Google Scholar
  48. [48]
    F. Oort -Foliations of moduli spaces.[In preparation.]Google Scholar
  49. [49]
    V. Platonov & A. Rapinchuk Algebraic groups and number theory. Pure and appl math. Vol 139, Academic Press 1994.Google Scholar
  50. [50]
    M. Poletti- Differenziali esatti di prima specie su variety abeliane.Ann. Scuola Norm. Sup. Pisa 21 (1967), 107–110.MathSciNetMATHGoogle Scholar
  51. [51]
    G. Prasad- Strong approximation for semi-simple groups over function fields.Ann. Math. 105 (1977), 553–572.MATHCrossRefGoogle Scholar
  52. [52]
    I. Reiner-Maximal orders. Academis Press 1975.Google Scholar
  53. [53]
    W. Scharlau-Quadratic and hermitian forms. Grundl. math. Wissensch. 270, Springer-Verlag 1985.Google Scholar
  54. [54]
    Seminaire de geometric algebrigue1967–1969, SGA 7:Groupes de monodromie en geometric algebrigue.(A. Grothendieck, M. Raynaud, D. S. Rim.) Vol. I, Lect. Notes Math. 288, Springer-Verlag, 1972.Google Scholar
  55. [55]
    J-P. Serre -Cohomologie galoisienne.Cinquieme edition, revisee et completee. Lect. Notes Math. 5, Springer-Verlag 1994.Google Scholar
  56. [56]
    J-P. Serre -Sur la topologie des varietes algebrigues en caracteristigue p.Symp. Int. Top. Alg. Mexico (1985), pp. 24–53 (see Collected works, Vol. I, pp. 501–530).Google Scholar
  57. [57]
    G. Shimura -Arithmetic of alternating forms and quaternion hermitian forms.Journ. Math. Soc. Japan 15 (1963), 33–65.MathSciNetMATHCrossRefGoogle Scholar
  58. [58]
    T. Shioda -Supersingular K3 surfaces.In: Algebraic Geometry, Copenhagen 1978 (Ed. K. Lonsted). Lect. Notes Math. 732, Springer-Verlag, 1979; pp. 564–591.Google Scholar
  59. [59]
    T. A. Springer - Linear algebraic groups. Second edition. Progress Math. 9, Birkhauser, 1998.Google Scholar
  60. [60]
    L. Szpiro -Proprietes numerigues du faisceau dualisant relatif.Sem. sur les pinceaux de courbes de genre aux moms deux. Ed. L. Szpiro. Asterisque 86, Soc. Math. France, 1981; pp. 44–78.Google Scholar
  61. [61]
    T. Wedhorn -The dimension of Oort strata of Shimura varieties of PEL-type.This volume, pp. 441–471.Google Scholar
  62. [62]
    Yu. G. Zarhin -Endomorphisms of abelian varieties and points of finite order in characteristic p.Math. Notes Acad. Sci. USSR 21 (1977), 734–744.MathSciNetGoogle Scholar
  63. [63]
    T. Zink-Cartiertheorie kommutativer formaler Gruppen. Teubner-Texte Math. 68, Teubner, Leipzig, 1984.Google Scholar
  64. [64]
    T. Zink-The display of a formal p-divisible group, University of Bielefeld, Preprint 98–017, February 1998.Google Scholar
  65. [65]
    T. Zink-A Dieudonne theory for p-divisible groups. Manuscript, 23 pp., September 1998.Google Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • Frans Oort

There are no affiliations available

Personalised recommendations