Recent Advances in Mesh Adaptivity for Optimal Control Problems

  • WenBin Liu
Conference paper
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 138)


In this work, we present a brief review on recent developments on adaptive finite element method for optimal control problems. We review some current approaches commonly used in adaptive finite element method, and further discuss the main obstacles in applying these approaches to finite element approximation of optimal control problems. We then discuss some recent progress in this area and possible future research. In particular, we report upon the recent advances made by the research groups in Kent and Heidelberg.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Ainsworth and J. T. OdenA posteriori error estimators in finite element analysisComput. Methods Appl. Mech. Engrg.142 (1997), pp. 1–88.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    P. Alotto, etcMesh adaption and optimisation techniques in magnet designIEEE Trans. on Magnetics321996.Google Scholar
  3. [3]
    W. AltOn the approximation of infinite optimisation problems with an application to optimal control problemsAppl. Math. Optim.12 (1984), pp. 15–27.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    I. Babuska and W. C. RheinboldtError estimates for adaptive finite element computationsSIAM. J. Numer. Anal.5 (1978), pp. 736–754.MathSciNetCrossRefGoogle Scholar
  5. [5]
    N. V. Banichuk, etcMesh refinement for shape optimisationStructural optimisation9 (1995), pp. 45–51.Google Scholar
  6. [6]
    H. T. Bank and K. KunischEstimation techniques for distributed parameter systemsBirkhäuser, Boston, 1989.CrossRefGoogle Scholar
  7. [7]
    R. E. Bank and A. WeiserSome a posteriori error estimators for elliptic partial differential equationsMath. Comp.44 (1985), pp. 283–301.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    J. Baranger and H. E. AmriA posteriori error estimators in finite element approximation of quasi-Newtonian flowsM2 AN25 (1991), pp. 31–48.MATHGoogle Scholar
  9. [9]
    J. W. Barrett and W. B. LiuFinite element approximation of quasi-Newtonian flowsNumer. Math.68 (1994), pp. 437–456.MathSciNetMATHGoogle Scholar
  10. [10]
    R. Becker and H. KappOptimization in PDE models with adaptive finite element discretizationReport 98–20 (SFB 359), University of Heidelberg.Google Scholar
  11. [11]
    R. Becker, H. Kapp, and R. RannacherAdaptive finite element methods for optimal control of partial differential equations: basic concept, SFB 359, University Heidelberg, 1998.Google Scholar
  12. [12]
    Z. H. Ding, L. Ji, and J. X. ZhouConstrained L QR problems in elliptic distributed control systems with point observationsSIAM J. Control Optim.34 (1996), pp. 264–294.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    K. Eriksson and C. JohnsonAdaptive finite element methods for parabolic problems I: a linear model problemSIAM J. Numer. Anal.28No. 1 (1991), pp. 43–77.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    F. S. FalkApproximation of a class of optimal control problems with order of convergence estimatesJ. Math. Anal. Appl.44 (1973), pp. 28–47.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    D. A. French and J. T. KingApproximation of an elliptic control problem by the finite element methodNumer. Funct. Anal. Appl.12 (1991), pp. 299–315.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    T. GeveciOn the approximation of the solution of an optimal control problem governed by an elliptic equationRAIRO Anal. Numer.13 (1979), pp. 313–328.MathSciNetMATHGoogle Scholar
  17. [17]
    M. D. Gunzburger, L. Hou, and Th. SvobodnyAnalysis and finite element approximation of optimal control problems for stationary Navier-Stokes equations with Dirichlet controlsRAIRO Model. Math. Anal. Numer.25 (1991), pp. 711–748.MathSciNetMATHGoogle Scholar
  18. [18]
    J. Haslinger and P. NeittaanmakiFinite element approximation for optimal shape designJohn Wiley and Sons, Chichester, 1989.Google Scholar
  19. [19]
    E. J. Haug and J. Cea (eds.)Optimization of distributed parameter structuresSijthoff & Noordhoff, Alphen aan den Rijn, Netherlands, 1980.Google Scholar
  20. [20]
    G. KnowlesFinite element approximation of parabolic time optimal control prob-lemsSIAM J. Control Optim.20 (1982), pp. 414–427.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    I. LasieckaRitz-Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditionsSIAM J. Control Optim.22 (1984), pp. 744–500.MathSciNetCrossRefGoogle Scholar
  22. [22]
    R. Li, T. Tang, and P. W. ZhangMoving mesh methods in multiple dimensions based on harmonic mapsto appear.Google Scholar
  23. [23]
    J. L. LionsOptimal control of systems governed by partial differential equationsSpringer-Verlag, Berlin, 1971.MATHCrossRefGoogle Scholar
  24. [24]
    W. B. Liu and J. W. BarrettFinite element approximation of some degenerate monotone quasi-linear elliptic systemsSIAM. J. Numer. Anal.33 (1996), pp. 88106.MathSciNetGoogle Scholar
  25. [25]
    W. B. Liu and D. TibaError estimates in the approximation of optimal control problemsto be published in Numer. Funct. Anal. Optim., 2000.Google Scholar
  26. [26]
    W. B. Liu and N. YanA posteriori error estimates for a model boundary optimal control problemJ. Comput. Appl. Math.120No. 1–2 (2000) (special issue), pp. 159–173.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    W. B. Liu and N. N. YanA posteriori error analysis for convex boundary control problemsSIAM. J. Numer. Anal.39No. 1 (2001), pp. 73–99.MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    W. B. Liu and N. N. YanA posteriori error analysis for convex distributed optimal control problemsan invited submission to a special issue on Adaptive Finite Element Method, Adv. Comp. Math., 2000.Google Scholar
  29. [29]
    W. B. Liu and N. N. YanA posteriori error estimators for a class of variational inequalitiesto appear.Google Scholar
  30. [30]
    W. B. Liu and N. YanA posteriori error estimates for parabolic optimal control problemssubmitted to Numer. Math., 2000.Google Scholar
  31. [31]
    W. B. Liu and N. N. YanA posteriori error estimates for a model nonlinear optimal control problemto be published in Proceedings of 3rd European Conference on Numerical Mathematics and Advanced Applications, 2000.Google Scholar
  32. [32]
    K. MalanowskiConvergence of approximations vs. regularity of solutions for convex, control constrained, optimal control systemsAppl. Math. Optim.8 (1982).Google Scholar
  33. [33]
    K. Maute, S. Schwarz, and E. RammAdaptive topology optimization of elastoplastic structuresStructural Optimization15No. 2 (1998), pp. 81–91.CrossRefGoogle Scholar
  34. [34]
    R. S. McKnight and Jr. BorsargeThe Ritz-Galerkin procedure for parabolic control problemsSIAM J. Control Optim.11 (1973), 510–524.MATHCrossRefGoogle Scholar
  35. [35]
    K. Miller and R. N. MillerMoving finite element methods ISIAM J. Numer. Anal.18 (1981), 1019–1032.MATHCrossRefGoogle Scholar
  36. [36]
    P. Neittaanmaki and D. TibaOptimal control of nonlinear parabolic systemsTheory, algorithms and applications, M. Dekker, New York, 1994.Google Scholar
  37. [37]
    O. PironneauOptimal shape design for elliptic systemsSpringer-Verlag, Berlin, 1984.MATHCrossRefGoogle Scholar
  38. [38]
    R. PytlakNumerical Methods for Optimal Control Problems With State ConstraintsLecture Notes in Math.1707Springer-Verlag, 1999.Google Scholar
  39. [39]
    D. Tiba and F. TröltzschError estimates for the discretization of state constrained convex control problemsNumer. Funct. Anal. Optim.17 (1996), pp. 1005–1028.MathSciNetMATHCrossRefGoogle Scholar
  40. [40]
    A. Schleupen, K. Maute, E. RammAdaptive FE-procedures in shape optimizationStructural and Multidisciplinary Optimization19 (2000), pp. 282–302.CrossRefGoogle Scholar
  41. [41]
    R. VerfurthA review of posteriori error estimation and adaptive mesh refinement techniquesWiley-Teubner, 1996.Google Scholar

Copyright information

© Springer Basel AG 2001

Authors and Affiliations

  • WenBin Liu

There are no affiliations available

Personalised recommendations