Degenerate Evolution Systems Modeling the Cardiac Electric Field at Micro- and Macroscopic Level

  • Piero Colli Franzone
  • Giuseppe Savaré
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 50)

Abstract

The aim of this paper is to study the reaction-diffusion systems arising from the mathematical models of the cardiac electric activity at the micro- and macroscopic level.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Attouch, Variational convergence for functions and operators, Pitman (Advanced Publishing Program), Boston, MA, 1984.MATHGoogle Scholar
  2. [2]
    C. Baiocchi, Discretization of evolution variational inequalities, Partial differential equations and the calculus of variations, Vol. I (F. Colombini, A. Marino, L. Modica, and S. Spagnolo, eds.), Birkhäuser Boston, Boston, MA, 1989, pp. 59–92.CrossRefGoogle Scholar
  3. [3]
    N. Bakhvalov and G. Panasenko, Homogenisation: averaging processes in periodic media, Kluwer Academic Publishers Group, Dordrecht, 1989, Mathematical problems in the mechanics of composite materials, Translated from the Russian by D. Leĭtes.MATHGoogle Scholar
  4. [4]
    F. Bassetti, Variable time-step discretization of degenerate evolution equations in Banach spaces, Tech. report, IAN-CNR, Pavia, 2002.Google Scholar
  5. [5]
    A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures, North-Holland Publishing Co., Amsterdam, 1978.MATHGoogle Scholar
  6. [6]
    H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contribution to Nonlinear Functional Analysis, Proc. Sympos. Math. Res. Center, Univ. Wisconsin, Madison, 1971, Academic Press, New York, 1971, pp. 101–156.Google Scholar
  7. [7]
    H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973, North-Holland Mathematics Studies, No. 5. Notas de Matemática (50).MATHGoogle Scholar
  8. [8]
    H. Brezis, On some degenerate nonlinear parabolic equations, Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, 111., 1968), Amer. Math. Soc, Providence, R.I., 1970, pp. 28-38.Google Scholar
  9. [9]
    H. Brézis, Intégrales convexes dans les espaces de Sobolev, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), vol. 13, 1972, pp. 9–23 (1973).Google Scholar
  10. [10]
    H. Brézis, Problèmes unilatéraux, J. Math. Pures Appl. (9) 51 (1972), 1–168.MathSciNetGoogle Scholar
  11. [11]
    H. Brézis C. Bardos, Sur une classe de problèmes d’évolution non linéaires, J. Differential Equations 6 (1969), 345–394.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    N. F. Britton, Reaction-diffusion equations and their applications to biology, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1986.MATHGoogle Scholar
  13. [13]
    R. W. Carroll and R. E. Showalter, Singular and degenerate Cauchy problems, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1976, Mathematics in Science and Engineering, Vol. 127.Google Scholar
  14. [14]
    R. G. Casten, H. Cohen, and P. A. Lagerstrom, Perturbation analysis of an approximation to the Hodgkin-Huxley theory, Quart. Appl. Math. 32 (1974/75), 365–402.MathSciNetGoogle Scholar
  15. [15]
    P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations, Comm. Partial Differential Equations 15 (1990), no. 5, 737–756.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    P. Colli Franzone and L. Guerri, Spreading of excitation in 3-d models of the anisotropic cardiac tissue, Math. Biosc. 113 (1993), 145–209.MATHCrossRefGoogle Scholar
  17. [17]
    P. Colli Franzone, L. Guerri, and S. Rovida, Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulations, J. Math. Biol. 28 (1990), no. 2, 121–176.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    J. Cronin, Mathematics of cell electrophysiology, Marcel Dekker Inc., New York, 1981.MATHGoogle Scholar
  19. [19]
    E. DiBenedetto and R. E. Showalter, Implicit degenerate evolution equations and applications, SIAM J. Math. Anal. 12 (1981), no. 5, 731–751.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    L. Ebihara and E. A. Johnson, Fast sodium current in cardia muscle, Biophys. J. 32 (1980), 779–790.CrossRefGoogle Scholar
  21. [21]
    A. Favini and A. Yagi, Degenerate differential equations in Banach spaces, Marcel Dekker Inc., New York, 1999.MATHGoogle Scholar
  22. [22]
    R. Glowinski, J.-L. Lions, and R. Trémolières, Numerical analysis of variational inequalities, North-Holland Publishing Co., Amsterdam, 1981, Translated from the French.MATHGoogle Scholar
  23. [23]
    C. S. Henriquez, A. L. Muzikant, and C. K. Smoak, Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: simulations in a three dimensional bidomain model, J. Cardiovasc. Electrophysiol. 7 (1996), 424–444.CrossRefGoogle Scholar
  24. [24]
    C. S. Henriquez, Simulating the electrical behavior of cardiac tissue using the bidomain model, Crit. Rev. Biomed. Engr. 21 (1993), 1–77.MathSciNetGoogle Scholar
  25. [25]
    A. L. Hodkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117 (1952), 500–544.Google Scholar
  26. [26]
    D. Hoff, Stability and convergence of finite difference methods for systems of nonlinear reaction-diffusion equations, SIAM J. Numer. Anal. 15 (1978), no. 6, 1161–1177.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    J. J. B. Jack, D. Noble, and R. W. Tsien, Electric current flow in excitable cells, Clarendon Press, Oxford, 1983.Google Scholar
  28. [28]
    J. W. Jerome, Convergence of successive iterative semidiscretizations for FitzHugh-Nagumo reaction diffusion systems, SIAM J. Numer. Anal. 17 (1980), no. 2, 192–206.MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    V. V. Jikov, S. M. Kozlov, and O. A. Oleĭnik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994, Translated from the Russian by G. A. Yosifian [G. A. Iosifyan].CrossRefGoogle Scholar
  30. [30]
    J. Keener and J. Sneyd, Mathematical physiology, Springer-Verlag, New York, 1998.MATHGoogle Scholar
  31. [31]
    J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969.MATHGoogle Scholar
  32. [32]
    J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications.Vol. I-II, Springer-Verlag, New York, 1972, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 182.CrossRefGoogle Scholar
  33. [33]
    J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appi. Math. 20 (1967), 493–519.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    CH. Luo and Y. Rudy, A dynamic model of the cardiac ventricular action potential, i. simulations of ionic currents and concentration changes, Circ. Res. 74 (1994), 1071–1096.CrossRefGoogle Scholar
  35. [35]
    M. Mascagni, The backward Euler method for numerical solution of the Hodgkin-Huxley equations of nerve conduction, SIAM J. Numer. Anal. 27 (1990), no. 4, 941–962.MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    R. M. Miura, Accurate computation of the stable solitary wave for the FitzHugh-Nagumo equations, J. Math. Biol. 13 (1981/82), no. 3, 247–269.MathSciNetCrossRefGoogle Scholar
  37. [37]
    J. S. Neu and W. Krassowska, Homogenization of syncitial tissues, Crit. Rev. Biom. Engr. 21 (1993), 137–199.Google Scholar
  38. [38]
    R. H. Nochetto, G. Savaré, and C. Verdi, A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations, Comm. Pure Appl. Math. 53 (2000), no. 5, 525–589.MathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    O. A. Oleĭnik, A. S. Shamaev, and G. A. Yosifian, Mathematical problems in elasticity and homogenization, North-Holland Publishing Co., Amsterdam, 1992.MATHGoogle Scholar
  40. [40]
    O. A. Oleĭnik and T. Shaposhnikova, On homogenization problems for the Laplace operator in partially perforated domains with Neumann’s condition on the boundary of cavities, Atti Accad. Naz. Lincei Cl. Sei. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 6 (1995), no. 3, 133–142.MATHGoogle Scholar
  41. [41]
    B. J. Roth, How the anisotropy of the intracellular and extracellular conductivities influence stimulation of cardiac muscle, J. Math. Biol. 30 (1992), 633–646.MATHCrossRefGoogle Scholar
  42. [42]
    B. J. Roth and W. Krassowska, The induction of reentry in cardiac tissue. The missing link: how electric fields alter transmembrane potential, Chaos 8 (1998), 204–219.CrossRefGoogle Scholar
  43. [43]
    J. Rulla, Error analysis for implicit approximations to solutions to Cauchy problems, SIAM J. Numer. Anal. 33 (1996), 68–87.MathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    E. Sánchez-Palencia and A. Zaoui (eds.), Homogenization techniques for composite media, Springer-Verlag, Berlin, 1987, Papers from the course held in Udine, July 1-5, 1985.MATHGoogle Scholar
  45. [45]
    E. Sánchez-Palencia, Nonhomogeneous media and vibration theory, Springer-Verlag, Berlin, 1980.Google Scholar
  46. [46]
    S. Sanfelici, Convergence of the galerkin approximation of a degenerate evolution problem in electrocardiology, Numer. Methods for Partial Differential Equations 18 (2002), 218–240.MathSciNetMATHCrossRefGoogle Scholar
  47. [47]
    G. Savaré, Approximation and regularity of evolution variational inequalities, Rend. Acc. Naz. Sei. XL Mem. Mat. XVII (1993), 83–111.Google Scholar
  48. [48]
    G. Savaré, Weak solutions and maximal regularity for abstract evolution inequalities, Adv. Math. Sci. Appl. 6 (1996), 377–418.MathSciNetMATHGoogle Scholar
  49. [49]
    R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, American Mathematical Society, Providence, RI, 1997.MATHGoogle Scholar
  50. [50]
    J. Smoller, Shock waves and reaction-diffusion equations, second ed., Springer-Verlag, New York, 1994.MATHCrossRefGoogle Scholar
  51. [51]
    N. Trayanova, K. Skouibine, F. Aguel, The role of cardiac tissue structure in defibrillation, Chaos 8 (1998), 221–253.CrossRefGoogle Scholar
  52. [52]
    J. P. Wikswo, Tissue anisotropy, the cardiac bidomain, and the virtual cathod effect, Cardiac Electrophysiology: From Cell to Beside (D. P. Zipes and J. Jalife, eds.), W. B. Saunders Co., Philadelphia, 1994, pp. 348–361.Google Scholar
  53. [53]
    A. L. Wit, S. M. Dillon, and J. Coromilas, Anisotropy reentry as a cause of ventricular tachyarhythmias, Cardiac Electrophysiology: From Cell to Beside (D. P. Zipes and J. Jalife, eds.), W. B. Saunders Co., Philadelphia, 1994, pp. 511–526.Google Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Piero Colli Franzone
    • 1
  • Giuseppe Savaré
    • 1
  1. 1.Dipartimento di Matematica “F. Casorati”Università di PaviaPaviaItaly

Personalised recommendations