The Hamilton Operator and Quantum Vacuum for Nonconformal Scalar Fields in the Homogeneous and Isotropic Space

  • Yu. V. Pavlov
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 132)

Abstract

The diagonalization of the metrical and canonical Hamilton operators of a scalar field with an arbitrary coupling, with a curvature in N-dimensional homogeneous isotropic space is considered in this paper. The energy spectrum of the corresponding quasiparticles is obtained and then the modified energy-momentum tensor is constructed; the latter coincides with the metrical energy-momentum tensor for conformal scalar field. Under the diagonalization of corresponding Hamilton operator the energies of relevant particles of a nonconformal field are equal to the oscillator frequencies, and the density of such particles created in a nonstationary metric is finite. It is shown that the modified Hamilton operator can be constructed as a canonical Hamilton operator under the special choice of variables.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.A. Grib, S.C. Mamayev and V.M. Mostepanenko, Vacuum quantum effects in strong fields, Friedmann Laboratory Publishing, St. Petersburg, 1994.Google Scholar
  2. [2]
    N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University Press, 1982.MATHCrossRefGoogle Scholar
  3. [3]
    V.B. Bezerra, V.M. Mostepanenko and C. Romero, Hamiltonian diagonalization for a nonconformal scalar field in an isotropic gravitational background, Int. J. Mod. Phys. D 7 (1998) 249.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    I.H. Redmount, Natural vacua in hyperbolic Friedmann-Robertson-Walker space-times, Phys. Rev. D 60 (1999) 104004.CrossRefMathSciNetGoogle Scholar
  5. [5]
    J. Lindig, Not all adiabatic vacua are physical states, Phys. Rev. D 59 (1999) 064011.CrossRefMathSciNetGoogle Scholar
  6. [6]
    M. Bordag, J. Lindig, V.M. Mostepanenko and Yu.V. Pavlov, Vacuum stress-energy tensor of nonconformal scalar field in quasi-Euclidean gravitational background, Int. J. Mod. Phys. D 6 (1997) 449.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    M. Bordag, J. Lindig and V.M. Mostepanenko, Particle creation and vacuum polarization of a non-conformal scalar field near the isotropic cosmological singularity, Class. Quantum Gray. 15 (1998) 581.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    A.A. Grib and S.G. Mamayev, On field theory in the Friedmann space, Yad. Fiz. 10 (1969) 1276. (Engl. trans. in Soy. J. Nucl. Phys. (USA) 10 (1970) 722).Google Scholar
  9. [9]
    A.A. Grib and S.G. Mamayev, Creation of matter in the Friedmann model of the Universe, Yad. Fiz. 14 (1971) 800. (Engl. trans. in Soy. J. Nucl. Phys. (USA) 14 (1972) 450).Google Scholar
  10. [10]
    L. Parker, Quantized fields and particle creation in Expanding Universe, I, Phys. Rev. 183 (1969) 1057.MATHCrossRefGoogle Scholar
  11. [11]
    F.A. Berezin, The method of second quantization, Academic Press, New York, 1966.MATHGoogle Scholar
  12. [12]
    S.A. Fulling, Remarks on positive frequency and Hamiltonians in expanding universes, Gen. Relativ. Gravit. 10 (1979) 807.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    N.A. Chernikov and E.A. Tagirov, Quantum theory of scalar field in de Sitter space-time, Ann. Inst. H. Poincare A 9 (1968) 109.MATHMathSciNetGoogle Scholar
  14. [14]
    M. Castagnino and R. Ferraro, Observer-dependent quantum vacua in curved space, Phys. Rev. D 34 (1986) 497.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    M.V. Fedoryuk, Asymptotic methods for linear ordinary differential equations, Nauka, Moscow, 1983.MATHGoogle Scholar
  16. [16]
    S.G. Mamayev, V.M. Mostepanenko and V.A. Shelyuto, Dimensional regularization method for quantized fields in non-stationary isotropic spaces, Theor. Math. Phys. 63 (1985) 366.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Yu. V. Pavlov
    • 1
  1. 1.Institute of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations