Advertisement

Relativistic Boltzmann Equation

  • Carlo Cercignani
  • Gilberto Medeiros Kremer
Part of the Progress in Mathematical Physics book series (PMP, volume 22)

Abstract

The purpose of this chapter is to introduce the basic concepts of relativistic kinetic theory and the relativistic Boltzmann equation, which rules the time evolution of the distribution function.

Keywords

Boltzmann Equation Volume Element Particle Number Density Collision Term Equilibrium Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Bichteler, Bemerkungen über relativistische Stoßinvarianten, Z. Physik 182, 521–523 (1965).ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    A. V. Bobylev, Exact solutions of the Boltzmann equation and the theory of relaxation of Maxwell gas, USSR Theor. Math Phys. 60, 280–310 (1984).MathSciNetGoogle Scholar
  3. 3.
    A.V. Bobylev and C. Cercignani, On the rate of entropy production for the Boltzmann equation J. Stat. Phys. 94, 603–618 (1999).MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    R. H. Boyer, Some uses of hyperbolic velocity space, Am. J. Phys. 33, 910–916 (1965).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    T. Carleman, Sur la théorie de l’équation intégro-differentielle de Boltzmann, Acta Mathematica 60, 91–146 (1933).MathSciNetCrossRefGoogle Scholar
  6. 6.
    T. Carleman, Problèmes mathématiques dans la théorie cinétique des gaz (Almqvist & Wiksells, Uppsala, 1957).zbMATHGoogle Scholar
  7. 7.
    E. A. Carlen and M. C. Carvalho, The central limit theorem, entropy production and stability of the rate of convergence for the Boltzmann equation, in Probabilistic methods in mathematical physics, pp. 140–154, eds. F. Gerra, M. I. Loffredo and C. Marchioro, (World Scientific, Singapore, 1992).Google Scholar
  8. 8.
    C. Cercignani, The Boltzmann equation and its applications (Springer, New York, 1988).zbMATHCrossRefGoogle Scholar
  9. 9.
    C. Cercignani, Are there more than five linearly-independent collision invariants for the Boltzmann equation?, J. Stat. Phys. 58817–823 (1990).MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    C. Cercignani, H-theorem and trend to equilibrium in the kinetic theory of gases, Arch. Mech. 34231–241 (1982).MathSciNetzbMATHGoogle Scholar
  11. 11.
    C. Cercignani, Ludwig Boltzmann. The man who trusted atoms, (Oxford Univ. Press, Oxford, 1998).zbMATHGoogle Scholar
  12. 12.
    C. Cercignani and G. M. Kremer, On relativistic collisional invariants, J. Stat. Phys. 96 439–445 (1999).MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    C. Cercignani and G. M. Kremer, Trend to equilibrium of a degenerate relativistic gas, J. Stat. Phys. 98, 441–456 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    N. A. Chernikov, Equilibrium distribution of the relativistic gas, Acta Phys. Polon. 26 1069–1092 (1964).MathSciNetGoogle Scholar
  15. 15.
    J. J. Dijkstra, Mathematical aspects of relativistic kinetic theory II. The summational invariants, Proc. Kon. Ned. Akad. Wetensch. 81B 265–289 (1978).MathSciNetGoogle Scholar
  16. 16.
    J. Ehlers, General relativity and kinetic theory, in Proceedings of the international school of physics, Enrico Fermi,course 47, pp. 1–70, ed. R. K. Sachs (Academic Press, New York, 1971).Google Scholar
  17. 17.
    S. R. de Groot, W. A. van Leeuwen and Ch. G. van Weert, Relativistic kinetic theory (North-Holland, Amsterdam, 1980).Google Scholar
  18. 18.
    F. Jüttner, Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie, Ann. Physik und Chemie 34 856–882 (1911).zbMATHCrossRefGoogle Scholar
  19. 19.
    F. Jüttner, Die relativistische Quantentheorie des idealen Gases, Zeitschr. Physik, 47 542–566 (1928).ADSzbMATHCrossRefGoogle Scholar
  20. 20.
    D. C. Kelly, The kinetic theory of a relativistic gas, unpublished report (Miami University, Oxford, 1963).Google Scholar
  21. 21.
    G. M. Kremer, Uma introdução à teoria cinética relativística (Editora da UFPR, Curitiba, 1998).Google Scholar
  22. 22.
    L. D. Landau and E. M. Lifshitz, The classical theory of fields, 4th ed. (Pergamon Press, Oxford, 1980).Google Scholar
  23. 23.
    C. Marle, Sur l’établissement des équations de l’hydrodynamique des fluides relativistiques dissipatifs I. - L’équation de Boltzmann relativiste, Ann. Inst. Henri Poincaré 10 67–126 (1969).MathSciNetGoogle Scholar
  24. 24.
    E. A. Marten and M. C. Carvalho, Entropy production estimates for Boltzmann equations with physically realistic collisions kernels, J. Stat. Phys. 74, 743–782 (1994).ADSCrossRefGoogle Scholar
  25. 25.
    J. M. Stewart, Non-equilibrium relativistic kinetic theory, Lecture Notes in Physics, vol. 10 (Springer, Heidelberg, 1971).Google Scholar
  26. 26.
    J. L. Synge, The relativistic gas (North-Holland, Amsterdam, 1957).Google Scholar
  27. 27.
    G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation, Comm. Math. Phys. 203 667–706 (1999).MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    E. A. Uehling, and G. E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases. I, Phys. Rev. 43 552–561 (1933).ADSCrossRefGoogle Scholar
  29. 29.
    S. Weinberg, Gravitation and cosmology. Principles and applications of the theory of relativity (Wiley, New York, 1972).Google Scholar
  30. 30.
    B. Wennberg, On an entropy dissipation inequality for the Boltzmann equation, C. R. A. S. (Paris) 315 1441–1446 (1992).MathSciNetzbMATHGoogle Scholar
  31. 31.
    B. Wennberg, Entropy dissipation and and moment production for the Boltzmann equation, J. Stat. Phys. 86, 1053–1066 (1997).MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 2002

Authors and Affiliations

  • Carlo Cercignani
    • 1
  • Gilberto Medeiros Kremer
    • 2
  1. 1.Dipartimento di MatematicaPolitecnico di MilanoMilanoItaly
  2. 2.Departamento de FísicaUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations