Advertisement

Numerical Analysis in Optimal Control

  • William W. Hager
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 139)

Abstract

In this paper we explain and exemplify how one goes about analyzing the convergence of algorithms and discrete approximations in optimal control.

Keywords

Sequential Quadratic Programming SIAM Journal Discrete Approximation Coercivity Condition Euler Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations, John Wiley, New York, 1987.zbMATHGoogle Scholar
  2. [2]
    A. L. Dontchev and W. W. Hager, The Euler approximation in state constrained optimal control, Mathematics of Computation, 2000, 31 pages.Google Scholar
  3. [3]
    A. L. Dontchev and W. W. Hager, Lipschitzian stability for state constrained nonlinear optimal control, SIAM Journal on Control and Optimization, 36 (1998), 696–718.MathSciNetCrossRefGoogle Scholar
  4. [4]
    A. Dontchev and W. W. Hager, An inverse mapping theorem for set-valued maps, Proceedings of the American Mathematical Society, 121 (1994), 481–489.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    A. Dontchev and W. W. Hager, Lipschitzian stability in nonlinear control and optimization, SIAM Journal on Control and Optimization, 31 (1993), 569–603.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    A. L. Dontchev, W. W. Hager, and K Malanowski, Error bounds for Euler approximation of a state and control constrained optimal control problem, Numerical Functional Analysis and Optimization, 21 (2000), 653–682.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    A. Dontchev, W. W. Hager, A. Poore, and B. Yang, Optimality,stability, and convergence in nonlinear control, Applied Mathematics and Optimization, 31 (1995), 297–326.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    A. L. Dontchev, W. W. Hager, and V. M. Veliov,Second-order Runge-Kutta approximations in constrained optimal control, SIAM Journal on Numerical Analysis, 38 (2000), 202–226.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    W. W. Hager, Runge-Kutta methods in optimal control and the transformed adjoint system, Numerische Mathematik, 87 (2000), pp. 247–282.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    W. W. Hager, Multiplier methods for nonlinear optimal control, SIAM Journal on Numerical Analysis, 27 (1990), 1061–1080.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    W. W. Hager, Approximations to the multiplier method, SIAM Journal on Numerical Analysis, 22 (1985), 16–46.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    W. W. Hager, Rates of convergence for discrete approximations to unconstrained control problems, SIAM Journal on Numerical Analysis, 13 (1976), 449–472.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    W. W. Hager and R. Rostamian, Optimal coatings,bang-bang controls, and gradient techniques, Optimal Control: Applications and Methods, 8 (1987), 1–20.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    E. Hairer, S. P. NØrsett, and G. Wanner, Solving Ordinary Differential Equations I, second revised edition, Springer-Verlag, Berlin, 1993.zbMATHGoogle Scholar
  15. [15]
    P. Rentrop, Partitioned Runge-Kutta methods with stiffness detection and stepsize control, Numerische Mathematik, 47 (1985), 545–564.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Birkhãuser Verlag Basel/Switzerland 2001

Authors and Affiliations

  • William W. Hager
    • 1
  1. 1.Department of MathematicsUniversity of FloridaGainesvilleUSA

Personalised recommendations