Numerical Solution of Optimal Control Problems Governed by the Compressible Navier-Stokes Equations

  • S. Scott Collis
  • Kaveh Ghayour
  • Matthias Heinkenschloss
  • Michael Ulbrich
  • Stefan Ulbrich
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 139)

Abstract

Theoretical and practical issues arising in optimal boundary control of the unsteady two-dimensional compressible Navier-Stokes equations are discussed. Assuming a sufficiently smooth state, formal adjoint and gradient equations are derived. For a vortex rebound model problem wall normal suction and blowing is used to minimize cost functionals of interest, here the kinetic energy at the final time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Berggren, Numerical solution of a flow-control problem: Vorticity reduction by dynamic boundary action, SIAM J. Scientific Computing, 19 (1998), 829–860.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    T. R. Bewley, P. Moin, and R. Teman, DNS-based predictive control of turbulence: an optimal target for feedback algorithms, Submitted to J. Fluid Mech., 2000.Google Scholar
  3. [3]
    E. M. Cliff, M. Heinkenschloss, and A. Shenoy, Airfoil design by an all-at-once method,International Journal for Computational Fluid Mechanics, 11 (1998), 3–25.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    S. S. Collis, K. Ghayour, M. Heinkenschloss, M. Ulbrich, and S. Ulbrich, Towards adjoint-based methods for aeroacoustic control, in: 39th Aerospace Science Meeting & Exhibit, January 8–11, 2001, Reno, Nevada, AIAA Paper 2001–0821 (2001).Google Scholar
  5. [5]
    S. S. Collis, Y. Chang, S. Kellogg, and R. D. Prabhu, Large Eddy Simulation and Turbulence Control, AIAA paper 2000–2564, (2000).Google Scholar
  6. [6]
    T. Colonius, S. K. Lele, and P. Moin, The Free Compressible Viscous Vortex, J. Fluid Mech. 230 (1991), pp. 45–73.MATHCrossRefGoogle Scholar
  7. [7]
    M. Gad el Hak, A. Pollard, and J.-P. Bonnet, editors, Flow Control. Fundamental and Practices, Springer Verlag, Berlin, Heidelberg, New York, 1998.Google Scholar
  8. [8]
    A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications, Translation of Mathematical Monographs 87, American Mathematical Society, Providence, Rhode Island, 2000.Google Scholar
  9. [9]
    A. V. Fursikov, M. D. Gunzburger, and L. S. Hou, Boundary value problems and optimal boundary control for the Navier-Stokes systems: The two-dimensional case, SIAM J. Control Optimization 36 (1998), 852–894.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    M. D. Gunzburger and L. S. Hou, editors, International Journal of Computational Fluid Dynamics, No. 1–2, 11 (1998).Google Scholar
  11. [11]
    M. D. Gunzburger, L. S. Hou, and T. P. Svobotny, Optimal control and optimization of viscous, incompressible flows, in: M. D. Gunzburger and R. A. Nicolaides, editors, Incompressible Computational Fluid Dynamics, Cambridge University Press, New York, (1993) 109–150.CrossRefGoogle Scholar
  12. [12]
    M. D. Gunzburger and S. Manservisi, The velocity tracking problem for NavierStokes flows with boundary control, SIAM J. Control Optim., 39 (2000), 594–634.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    D. Hoff, Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat-conducting fluids, Arch. Rational Mech. Anal., 139 (1997), 303–354.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    A. Jameson, L. Martinelli, and N. A. Pierce, Optimum aerodynamic design using the Navier-Stokes equations, Theor. and Comput. Fluid Dynamics, 10 (1998), 213–237.MATHCrossRefGoogle Scholar
  15. [15]
    A. Jameson and J. Reuther, Control theory based airfoil design using the Euler equations, AIAA Paper 94–4272, (1994).Google Scholar
  16. [16]
    W. H. Jou, W. P. Huffman, D. P. Young, R. G. Melvin, M. B. Bieterman, C. L. Hilems, and F. T. Johnson, Practical considerations in aerodynamic design optimization, in: Proceedings of the 12th AIAA Computational Fluid Dynamics Conference, San Diego, CA, June 19–22 1995. AIAA Paper 95–1730.Google Scholar
  17. [17]
    P. L. Lions, Mathematical Topics in Fluid Mechanics. Volume 2, Compressible Models. Oxford Lecture Series in Mathematics and its Applications 10, Claredon Press, Oxford, 1998.Google Scholar
  18. [18]
    A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67–104.MathSciNetMATHGoogle Scholar
  19. [19]
    A. Matsumura and T. Nishida, Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm Math. Phys. 89 (1983), 445–464.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    J. Nocedal and S. J. Wright, Numerical Optimization, Springer Verlag, Berlin, Heidelberg, New York, 1999.Google Scholar
  21. [21]
    B. Soemarwoto, The variational method for aerodynamic optimization using the Navier-Stokes equations, Technical Report 97–71, ICASE, NASA Langley Research Center, Hampton VA 23681–0001, 1997.Google Scholar
  22. [22]
    A. Valli, Mathematical results for compressible flows, in: J. F. Rodriguez and A. Sequeira, editors, Mathematical Topics in Fluid Mechanics, Pitman Research Notes Mathematics 274, Longman Scientific and Technical, Essex, (1992) 193–229.Google Scholar

Copyright information

© Birkhãuser Verlag Basel/Switzerland 2001

Authors and Affiliations

  • S. Scott Collis
    • 1
  • Kaveh Ghayour
    • 1
  • Matthias Heinkenschloss
    • 1
  • Michael Ulbrich
    • 2
  • Stefan Ulbrich
    • 2
  1. 1.Departments of Computational and Applied Mathematics and of Mechanical Engineering and Materials ScienceRice UniversityHoustonUSA
  2. 2.Lehrstuhl für Angewandte Mathematik und Mathematische StatistikTechnische Universität MünchenMünchenGermany

Personalised recommendations