Advertisement

Determining the Spatial and Temporal Patterns of Developmental Gene Expression in Vertebrates and Invertebrates Using in situ Hybridization Techniques

  • Ruth D. Gates
  • Thorsten Hadrys
  • Cesar Arenas-Mena
  • David K. Jacobs
Chapter
Part of the Methods and Tools in Biosciences and Medicine book series (MTBM)

Abstract

Over the past century, histologists have utilized specific stains and microscopy to resolve cellular components, tissue structure and classes of molecules. In addition, immuno-histochemistry continues to be widely used to localize proteins, a technique that has been employed extensively in comparative studies of both structural proteins and regulatory genes important in development. More recently in situ hybridization protocols have been developed which allow for the precise localization of specific nucleic acid sequences in embryos and tissue sections. The advantage of this approach over antibody studies is that a species-specific probe can be generated from a cloned gene product produced by PCR, RT-PCR or cDNA library screening, a methodology that eliminates both the intermediate step of developing an antibody and the concern regarding cross-species reactivity of the antibody. Thus, in the absence of an effective polyclonal or cross-reactive monoclonal antibody for a protein known to function across the taxa in situ hybridization is more time-and cost-effective.

Keywords

Acetic Anhydride Hybridization Solution Fume Hood Sheep Serum Developmental Gene Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wray CG, Langer MR, DeSalle RL, Lee JJ. et al. (1995) Origin of the Foraminifera. Proc. Nat. Acad. Sci. USA 92: 141–145Google Scholar
  2. 2.
    Keys DN, Lewis DL, Selegue JE, Pearson BJ et al. (1999) Recruitment of hedgehog regulatory circuit in butterfly eyespot evolution. Science 283(5401): 532–534PubMedCrossRefGoogle Scholar
  3. 3.
    Irvine SQ, Martindale MQ (1997) Novel 8 early patterns and regional restrictions in the expression of Hox genes in the polychaete annelid Chaetopterus. Dev. Biol. 210: 187Google Scholar
  4. 4.
    Jacobs DK, Wray CG, Wedeen C J at al. (2000) Molluscan engrailed expression, serial organization, and shell evolution. 9 Evolution and Development 2(6): 340–347 CrossRefGoogle Scholar
  5. 5.
    Lowe CJ, Wray GA (1997) Radical altera-tions in the roles of homeobox genes 10 during echinoderm evolution. Nature 389: 718–721PubMedCrossRefGoogle Scholar
  6. 6.
    Arenas-Mena C, Martinez P, Cameron RA, Davidson EH (1998) Expression of the Hox gene complex in the indirect development of a sea urchin. Proc. Natl. Acad. Sci. USA 95: 13062–1306PubMedCrossRefGoogle Scholar
  7. 7.
    Grens A, Gee L, Fisher DA, Bode HR (1996) CnNK-2 an NK-2 homeobox gene, has a role in patterning the basal end of the axis in Hydra . Dev. Biol. 180: 473–488PubMedCrossRefGoogle Scholar
  8. 8.
    Mokady 0, Dick MH, Lackschewitz D, Schierwater B et al. (1998) Over one-half billion years of head conservation? Expression of an ems class gene in Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa). Proc. Natl. Acad. Sci. USA 95(7): 3673–3678PubMedCrossRefGoogle Scholar
  9. 9.
    Pardue ML, Gall JG (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc. Nat. Acad. Sci. USA 64(2): 600–604PubMedCrossRefGoogle Scholar
  10. 10.
    John HA, Birnstiel ML, Jones KW (1969) RNA-DNA hybrids at the cytological level. Nature 223(206): 582–7PubMedCrossRefGoogle Scholar
  11. 11.
    Kearney L (1998) Detection of genomic sequences by fluorescence in situ hybridization to chromosomes. In: DG Wilkinson (ed): In Situ Hybridization: A Prac-tical Approach. Oxford University Press, Oxford, 165–180Google Scholar
  12. 12.
    Wilkinson DG (1998) The theory and practice of in situ hybridization. In: DG Wilkinson (ed): In Situ Hybridization: A Practical Approach. Oxford University Press, Oxford, 1–21Google Scholar
  13. 13.
    Cox KH, DeLeon DV, Angerer LM, Angerer RC (1984) Detection of mRNAs in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev. Biol. 101(2): 485–502PubMedCrossRefGoogle Scholar
  14. 14.
    Davidson EH (1986) Gene activity in early development (3rd ed). Academic Press, OrlandoGoogle Scholar
  15. 15.
    Britten RJ, Graham DE, Neufeld BR (1974) Analysis of repeating DNA sequences by reassociation. In: L Grossman, K. Moldave (eds): Nucleic Acids and Protein Synthesis. Academic Press, New YorkGoogle Scholar
  16. 16.
    Liu JK, Ghattas I, Liu S, Chen S et al. (1997) Dlx genes encode DNA-binding proteins that are expressed in an overlapping and sequential pattern during basal ganglia differentiation. Dev. Dyn. 210: 498–512PubMedCrossRefGoogle Scholar
  17. 17.
    Xu Q, Wilkinson DG (1998) In situ hybridization of mRNA with hapten labeled probes. In: DG Wilkinson (ed): In Situ Hybridization: A Practical Approach. Oxford University Press, Oxford, 87–106Google Scholar
  18. 18.
    Holten B, Wedeen CJ, Astrow SH, Weisblat DA (1994) Localization of polyadenylated RNAs during telophase formation and cleavage in leech embryos. Roux’s Arch. Dev. Biol. 204: 46–53Google Scholar
  19. 19.
    Islam N, Moss T (1996) Enzymatic removal of vitelline membrane and other protocol modifications for whole mount in situ hybridization of Xenopus embryos. Trends in Genetics 12(11): 459PubMedCrossRefGoogle Scholar
  20. 20.
    Tautz D, Pfeiffle C (1989) A nonradioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals a translational control of the segmentation gene hunchback. Chromosoma (Berl.) 98: 81–85CrossRefGoogle Scholar
  21. 21.
    Nardelli-Haefliger D, Shankland M (1992) Lox2 a putative leech segment identity gene, is expressed in the same segmental domain in different stem cell lineages. Development 116: 697–710PubMedGoogle Scholar
  22. 22.
    Master VA, Kourakis MJ, Martindale MQ (1996) Isolation, characterization, and expression of Le-msx a maternally expressed member of the msx gene family from glossiphoniid leech, Helobdella. Dev. Dynamics 207: 404–419CrossRefGoogle Scholar
  23. 23.
    Umesono Y, Watanabe K, Agata K (1997) A planarian orthopedia homolog is specifically expressed in the branch region of both the mature and regenerating brain. Dev. Growth Differ. 39: 723–727PubMedCrossRefGoogle Scholar
  24. 24.
    Agata K, Soejima Y, Kato K, Kobayashi C et al. (1998) Structure of the planarian central nervous system (CNS) revealed by neuronal cell markers. Zool. Sci. 15: 443–440CrossRefGoogle Scholar
  25. 25.
    Kato K, Orii H, Watanabe K, Agata K (1999) The role of dorsoventral interaction in the onset of planarian regeneration. Development 126: 1031–1040PubMedGoogle Scholar
  26. 26.
    Imase A, Kumagai T, Ohmae H, Irie Yet al. (1999) Localization of mouse type 2 Alu sequences in schistosomes. Parasitology 119(3): 315–321PubMedCrossRefGoogle Scholar
  27. 27.
    Yanze N, Groger H, Muller P, Schmid V (1999) Reversible inactivation of celltype-specific regulatory and structural genes in migrating isolated striated muscle cells of Jellyfish. Dev. Biol. 213: 194–201PubMedCrossRefGoogle Scholar
  28. 28.
    Peterson KJ, Harada Y, Cameron RA, Davidson EH (1999) Expression pattern of Brachyury and Not in the sea urchin: Comparative implications for the origins of mesoderm in the basal deuterostomes. Dev. Biol. 207: 419–431PubMedCrossRefGoogle Scholar
  29. 29.
    Friedrich AB, Merkert H, Fendert T, Hacker J et al. (1999) Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Mar. Biol. 134: 461–470CrossRefGoogle Scholar
  30. 30.
    Wahlberg MH (1997) Three main patterns in the expression of six actin genes in the plerceroid and adult Diphyllobothrium dendriticum tapeworm (Ces-toda). Mol. Biochem. Parisotol. 86: 199–209CrossRefGoogle Scholar
  31. 31.
    de Lange RPJ, van Minnen J (1998) Localization of the neuropeptide APGWa-mide in gastropod molluscs by in situ hybridization and immunocytochemistry. Gen. Comp. Endocrinol. 109: 166–174PubMedCrossRefGoogle Scholar
  32. 32.
    Manzanaras M, Marco R, Garesse R (1993) Genomic organization and developmental pattern of expression of the engrailed gene from the brine shrimp Artemia. Development 118: 1209–1219Google Scholar
  33. 33.
    Nulsen C, Nagy LM (1999) The role of wingless in the development of multibranched crustacean limbs. Dev. Genes Evol. 209: 340–348PubMedCrossRefGoogle Scholar
  34. 34.
    Harkey MA, Whiteley HR, Whiteley AR (1992) Differential expression of the msp130 gene among skeletal lineage cells in the sea urchin embryo: a three dimensional in situ hybridization analysis. Mech. Devel. 37: 173–184CrossRefGoogle Scholar
  35. 35.
    Mitsunaga-Nakatsubo K, Akasaka K, Sakamoto N, Takata K (1998) Differential expression of sea urchin Otx isoforms (HpOtxEand HpOtxL mRNA during early development. Int. J. Dev. Biol. 42: 645–651PubMedGoogle Scholar
  36. 36.
    Onodera H, Kobari K, Sakuma M, Sato et al. (1999) Expression of a src-type protein tyrosine kinase gene AcSrc1 in the sea urchin embryo. Dec. Growth Differ. 41: 19–28CrossRefGoogle Scholar
  37. 37.
    Bruce AEE, Shankland M (1998) Expression of the head gene Lox22-Otx in the leech Helobdella and the origin of the bilaterian body plan. Dev. Biol. 201:101–112PubMedCrossRefGoogle Scholar
  38. 38.
    Satake H, Takuwa K, Minakata H, Matsushima 0 (1999) Evidence for conservation of the vasopressin/oxytocin super-family in Annelida. J. Biol. Chem. 274: 5605–5611.PubMedCrossRefGoogle Scholar
  39. 39.
    Gomez-Saladin E, Wilson DL, Dickerson IM (1994) Isolation and in situ localization of a cDNA encoding a Kex2-like prohormone convertase in the nematode Caenorhabditis elegans. Cell. Mol. Neur. 14 (1): 9–24Google Scholar
  40. 40.
    Pan TL, Groger H, Schmid V (1998) A toxin homology domain in an astacinlike metalloproteinase of the jellyfish Podocoryne carnea with a dual role in digestion and development. Dev. Genes Evol. 208: 259–266PubMedCrossRefGoogle Scholar
  41. 41.
    Baader CD, Heiermann R, Schuchert P, Schmid V et al. (1995) Temporally and spatially restricted expression of a gland cell during regeneration and in vitro transdifferentiation in the hydrozoan Podocoryne carnea. Roux’s Arch. Dev. Biol. 204: 164–171Google Scholar
  42. 42.
    Boehringer Mannheim Biochemicals (1996) Nonradioactive in situ hybridization application manual. http://biochem.boehringer-mannheim.com/prodinf/manuals/InSitu/InSitoc.htm Google Scholar
  43. 43.
    Melton DA, Krieg PA, Rebagliati MR, Maniatis T et al. (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res 12(18): 7035–56PubMedCrossRefGoogle Scholar
  44. 44.
    Simeone A (1998) Detection of mRNA in tissue sections with radiolabelled probes. In: DG Wilkinson (ed): In Situ Hybridization: A Practical Approach. Oxford University Press, Oxford, 69–86Google Scholar
  45. 45.
    Technau U, Bode HR (1999) HyBra1 a Brachyury homologue, acts during head formation in Hydra . Development. 126: 999–1010PubMedGoogle Scholar
  46. 46.
    Wilkinson DG (1992) Whole mount in situ hybridization of vertebrate embryos. In: DG Wilkinson (ed): In Situ Hybridization: A Practical Approach. Oxford University Press, Oxford, 75–84Google Scholar
  47. 47.
    Hadrys T, Braun T, Rinkwitz-Brandt S, Arnold HH et al. (1998) Nkx5–1 controls semicircular canal formation in the mouse inner ear. Development 125(1): 5–1Google Scholar
  48. 48.
    Herbrand H, Guthrie S, Hadrys T, Hoffmann S et al. (1998) Two regulatory genes cNkx5–1 and cPax2 , show different responses to local signals during otic placode and vesicle formation in the chick embryo. Development 125(4): 5–1PubMedGoogle Scholar
  49. 49.
    Holland LZ, Holland PWH, Holland ND (1996) Revealing homologies between body parts of distantly related animals by in situ hybridization to developmental genes: Amphioxux versus vertebrates. In: JD Ferris, SR Palumbi (eds) Molecular zoology , advances , strategies and protocols. Wiley-Liss, Inc, New York, 267–282Google Scholar
  50. 50.
    Hauptmann G and Gerster T (1994) Two-color whole-mount in situ hybridization to vertebrate and Drosophila embryos. Trends Genet 10(8): 266PubMedCrossRefGoogle Scholar
  51. 51.
    Hauptmann G, Gerster T (1996) Multicolour whole-mount in situ hybridization to Drosophila embryos. Development Genes and Evolution 206(4): 292–295CrossRefGoogle Scholar
  52. 52.
    Jowett T (1998) Two color in situ hybridization. In: DG Wilkinson (ed): In Situ Hybridization: A Practical Approach. Oxford University Press, Oxford, 107–126Google Scholar
  53. 53.
    Wilkinson DG, Bailes JA, Champion JE, McMahon AP (1987) A molecular analysis of mouse development from 8–10 days post coitum detects changes only in embryonic globin expression. Development 99: 8–10PubMedGoogle Scholar
  54. 54.
    Bober E, Baum C, Braun T, Arnold 11H (1994) A novel NK-related mouse homeobox gene: expression in central and peripheral nervous structures during embryonic development. Dev. Biol. 162: 288–303PubMedCrossRefGoogle Scholar
  55. 55.
    Rinkwitz-Brandt S, Justus M, Oldenette II, Arnold HH et al. (1995) Distinct temporal expression of mouse Nkx-5.1 and Nkx-5.2 homeobox genes during brain and ear development. Mech. Dev. 52(23): 371–81PubMedCrossRefGoogle Scholar
  56. 56.
    Rinkwitz-Brandt S, Arnold HH, Bober E (1996) Regionalized expression of Nkx51 Nkx5–2 Pax2 and sek genes during mouse inner ear development. Hear. Res. 99(1–2): 129–38PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Ruth D. Gates
  • Thorsten Hadrys
  • Cesar Arenas-Mena
  • David K. Jacobs

There are no affiliations available

Personalised recommendations