Military Work in Mathematics 1914–1945: an Attempt at an International Perspective

  • Reinhard Siegmund-Schultze


After discussing some general methodological points this paper investigates in some detail the use of mathematics (not necessarily confined to academic mathematicians) in military work in the German and American cases, where as of now most knowledge is available. With respect to five other countries (Soviet Union, Great Britain, Italy, France, Japan) the discussion has to be restricted to a rough outline of problems and a collection of the rather scattered sources available. A case study is presented of mathematical war work in ballistics (Wolfgang Haack) which illustrates the complexity of the problems involved and the short distance between basic academic research and applied work for the military. The paper is concluded by appendices (tables) giving condensed information on mathematical war work in the seven countries considered.


Wind Tunnel Wind Tunnel Experiment Military Application Aberdeen Prove Ground Consiglio Nazionale Delle Ricerche 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amerio, L.: Mauro Picone e l’Istituto per le Applicazioni del Calcolo; in: A. Guerragio (ed., 1987), pp. 15–23.Google Scholar
  2. Anderson, J. D.: A History of Aerodynamics Cambridge University Press 1997.Google Scholar
  3. Andler, M.: Les mathématiques à l’École normale supérieure au XXe siècle: une esquisse; in: Sirinelli (1994), pp. 351–404.Google Scholar
  4. Ashford, O. M: Prophet or Professor. The Life and Work of Lewis Fry Richardson; Bristol and Boston: Adam Hilger 1985.Google Scholar
  5. Aspray, William: John von Neumann and the Origins of Modern Computing ; Cambridge, Mass.: MIT Press 1990.Google Scholar
  6. Bailes, Kendall E.: Technology and Society under Lenin and Stalin; Princeton: Princeton University Press 1978.Google Scholar
  7. Batchelor, G.: The Life and Legacy of G. I. Taylor; Cambridge: Cambridge University Press 1996.zbMATHGoogle Scholar
  8. Bayart, Denis & Crépel, Pierre: Statistical control of manufacture; in: Grattan-Guinness (ed.) (1994), volumeII pp.1386–1391.Google Scholar
  9. Beer, G. de: The Sciences Were Never at War; Cambridge: Cambridge University Press 1961.Google Scholar
  10. Bilstein, R. E.: Orders of Magnitude. A History of the NACA and the NASA 1915–1990; Washington, D.C.: NASA 1989 (also under
  11. Birkhoff, Garrett: Some leaders in American mathematics 1891–1941; in: Tarwater (ed. 1977), pp. 25–78.Google Scholar
  12. Birkhoff, Garrett: Computer developments 1935–1955, as seen from Cambridge, U.S.A.; in: Metropolis, N. et al. (1980), pp. 21–30.Google Scholar
  13. Bliss, Gilbert A.: Mathematics; The Scientific Monthly 24 (1927), pp. 308–319.Google Scholar
  14. Bode, H. W.: On the operation of a mathematics group in an industrial environment; in: Weyl, F. J. (ed.) 1953, pp. 84–87.Google Scholar
  15. Bogoljubov, A. N. & Urbanskij, V. M.: Organisation and evolution of mathematical institutes at the Ukranian Academy of Sciences (Russian); Istoriko-matematiceskie issledovanija 28 (1985), pp. 160–187.Google Scholar
  16. Booß, B. & Hoyrup, J.: Von Mathematik and Krieg; Marburg: Bund Demokratischer Wissenschaftler 1984.Google Scholar
  17. Bowles, M. D.: U.S. technological enthusiasm and british technological scepticism in the age of the analog brain; IEEE Annals of the History of Computing 18 (1996), No. 4, pp. 5–15.CrossRefGoogle Scholar
  18. Braun, H.-J.: Technology transfer under conditions of war: German aero-technology in Japan during the Second World War; History of Technology 11 (1987), pp. 1–23.Google Scholar
  19. Burnham, J. C. (ed.): Science in America. Historical Selections; New York: Holt, Rinehart and Winston 1971.Google Scholar
  20. Busemann, A.: Compressible fluids in the thirties; Annual Review of Fluid Mechanics 3 (1971), pp. 1–12.MathSciNetCrossRefGoogle Scholar
  21. Bush, V.: Operational Circuit Analysis. With an Appendix by N. Wiener; New York 1929.Google Scholar
  22. Bush, V.: The differential analyzer. A new machine for solving differential equations; Journal of the Franklin Institute 212 (1931), pp. 447–448.CrossRefGoogle Scholar
  23. Bush, V.: Pieces of Action; New York: William Morrow 1970.Google Scholar
  24. Chadeau, E.: Government, industry, and the nation: the growth of aeronautical technology in France (1900–1950); Aerospace Historian 35 (1988), March, pp. 26–44.Google Scholar
  25. Charbonnier, P.: Sur l’état actuel de la balistique extérieure théorique (1924); in: Proceedings of the International Mathematical Congress Toronto 1924, ed. J. C. Fields, Toronto University Press 1928, volumeII pp. 571–593.Google Scholar
  26. Courant, R. & Friedrichs, K.: Supersonic Flow and Shock Waves; New York: Interscience 1948.zbMATHGoogle Scholar
  27. Courant, R.; Friedrichs, K., & Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik; Mathematische Annalen 100 (1928), pp. 32–74. [english in: IBM Journal of Research and Development 11(1967), pp. 214–234]Google Scholar
  28. Courant, R. & Hilbert, D.: Methoden der mathematischen Physik; 2 volumes, Berlin: Springer 1924 and 1937.Google Scholar
  29. Davis, Ph.: Applied mathematics as social contract; Mathematics Magazine 61 (1988), pp. 139–147.MathSciNetzbMATHCrossRefGoogle Scholar
  30. Dickson, L. E.: Mathematics in war perspective; Bulletin American Mathematical Society 25 (1918/19), pp. 289–311.Google Scholar
  31. Drea, Edward J.: Reading each other’s mail: Japanese communications intelligence, 19201941; The Journal of Military History 55 (April 1991), pp. 185–205.CrossRefGoogle Scholar
  32. Drea, Edward J.: Were the Japanese codes secure“ Cryptologia: a quarterly journal devoted to cryptology 19 (1995), pp. 113–136.zbMATHGoogle Scholar
  33. Edgerton, D. E. H.: British scientific intellectuals and the relations of science, technology, and war; in: Forman, P. & Sánchez-Ron, J. M. (1996), pp. 1–35.Google Scholar
  34. Epple, M. & Remmert, V.: “Eine ungeahnte Synthese zwischen reiner und angewandter Mathematik.” Kriegsrelevante mathematische Forschung in Deutschland während desII. Weltkrieges; in: Doris Kaufmann (ed.): Geschichte der Kaiser-Wilhelm-Gesellschaft im Nationalsozialismus. Bestandsaufnahme und Perspektiven der Forschung; 2 volumes, Göttingen: Wallstein 2000, Band I, pp. 258–295.Google Scholar
  35. Erickson, J.: Radio-location and the air-defence problem: The design and development of Soviet radar 1934–40; Science Studies 2 (1972), pp. 241–268.CrossRefGoogle Scholar
  36. Forman, P. & Sánchez-Ron, J. M. (eds.): National Military Establishments and the Advancement of Science and Technology. Studies in the 20th Century History; Dordrecht, Boston, London: Kluwer 1996.Google Scholar
  37. Fortun, M. & Schweber, S. S.: Scientists and the state: the legacy of World War II; in: Gavroglu, K., Christianidis, J. & Nicolaidis, E. (eds.) Rends in the Historiography of Science Dordrecht etc: Kluwer 1993, pp. 327–354.Google Scholar
  38. Fox, L.: Early numerical analysis in the United Kingdom; in: Nash (1990), pp. 280–300. Fry, Th.: Probability and Its Engineering Uses; New York 1928.Google Scholar
  39. Fry, Th.: Industrial mathematics; The Bell System Technical Journal 20 (1941), pp. 255–292 [report for U.S. National Research Council 1940, also as supplement to American Mathematical Monthly 48 (1941), June/July, pp. 1–38.]Google Scholar
  40. Fry, Th.: Applied mathematics as a responsibility of the mathematical profession; in: Weyl, F. J. (ed.) 1953, pp. 89–97.Google Scholar
  41. Germain, P.: Applied mathematics in France; in: Weyl, F. J.(ed.) 1953, pp. 48–53.Google Scholar
  42. Godement, R.: Aux sources du modèle scientifique americain; La pensée 201 (1978), pp. 33–35;203 (1979), pp. 95–122;204 (1979), pp. 86–110.Google Scholar
  43. Goldstein, S.: Fluid Mechanics in the first half of this century; Annual Review of Fluid Mechanics 1 (1969), pp. 1–28.CrossRefGoogle Scholar
  44. Goldstine, H. H.: The Computer from Pascal to von Neumann; Princeton: Princeton University Press 1972.zbMATHGoogle Scholar
  45. Golubev, V. V.: Mechanics at Moscow University before the Great Socialist October Revolution and in the Soviet period (Russian); Istoriko-matematiceskie issledovanija 8 (1955), pp. 77–126.MathSciNetzbMATHGoogle Scholar
  46. Görtler, H.: Übersicht; in: Walther, A. (ed.) 1948–1953, volume 5 Mathematische Grundlagen der Strömungsmechanik (1948), pp. 1–12.Google Scholar
  47. Goudsmit, S. A.: Alsos; New York: Henry Schuman Inc. 1947.Google Scholar
  48. Grattan-Guinness, I. (ed.): Companion Enyclopedia of the History and Philosophy of the Mathematical Sciences 2 Volumes; London/New York: Routledge 1994.Google Scholar
  49. Gray, G. W.: Science at War; New York/London: Harper 1943.Google Scholar
  50. Gross, H.-E.: Das sich wandelnde Verhältnis von Mathematik und Produktion; in: Plath, P. & Sandkühler, H. J.: Theorie und Labor. Dialektik als Programm der Naturwissenschaft; Köln: Pahl-Rugenstein 1978, pp. 226–269.Google Scholar
  51. Grunden, W.E.: Science under the Rising Sun: Weapon’s Development and the Organization of Scientific Research in World War II Japan; Santa Barbara: PhD-Thesis University of California 1998, 385 pp.Google Scholar
  52. Guerragio, A. (ed.): La matematica italiana tra le due guerre mondiali; Bologna: Pitagora Editrice 1987.Google Scholar
  53. Haack, W.: Geschossformen kleinsten Wellenwiderstandes; Bericht der Lilienthal-Gesellschaft für Luftfahrtforschung 139 (1941), part 1, pp. 14–28.Google Scholar
  54. Haack, W.: Projectile Shapes for Smallest Wave Drag; Providence: Brown University, Report A9-T-3,53 leaves, 1948.Google Scholar
  55. Haack, W.: Rückschau über 85 Jahre Wissenschaftsmagazin (TU Berlin), 1987, no. 10, pp. 20–23.Google Scholar
  56. Haack, W.: Erinnerungen (Auf Kassetten gesprochen von 1984–1989); Berlin 1989 (mimeographed ms., 292 pp.).Google Scholar
  57. Haack, W.: 1935 bis 1937 Dozent an der Technischen Hochschule Berlin - Erinnerungen; in: Begehr, H. (ed.): Mathematik in Berlin. Geschichte und Dokumentation; 2 volumes, Aachen: Shaker 1998, volume 2, pp. 205–217.Google Scholar
  58. Hanle, P.: Bringing Aerodynamics to America; Cambridge, MA: MIT Press 1982.Google Scholar
  59. Hansen, J. R.: Engineer in Charge: A History of the Langley Aeronautical Laboratory 1917–1958; Washington, D.C.: NASA 1987.Google Scholar
  60. Hardy, G. H.: A Mathematician’s Apology; Cambridge: Cambridge University Press 1940.Google Scholar
  61. Hartcup, G.: The War of Invention Scientific Developments 1914–1914; London etc.: Brassey’s Defence Publishers 1988.Google Scholar
  62. Hartcup, G.: The Effect of Science on the Second World War; London etc.: MacMillan 2000.CrossRefGoogle Scholar
  63. Hashimoto, Takehiko: Graphical calculation and early aeronautical engineers; Historia Scientiarum (2) 3 (1994), pp. 159–183.Google Scholar
  64. Heims, Steve J. John von Neumann and Norbert Wiener. From Mathematics to the Technologies of Life and Death, Cambridge, Mass.: MIT Press, 1980.zbMATHGoogle Scholar
  65. Hensel, S., Ihmig, K.-N., & Otte, M.: Mathematik und Technik im 19. Jahrhundert in Deutschland; Göttingen: Vandenhoeck & Ruprecht 1989.zbMATHGoogle Scholar
  66. Hinsley, F. H., & Stripp, A. (eds.): Code Breakers. The Inside Story of Bletchley Park; Oxford: Oxford University Press 1993.Google Scholar
  67. Hodges, A.: Alan Turing the Enigma ; New York: Simon & Schuster 1983.zbMATHGoogle Scholar
  68. Hoff Kjeldsen, T.: A contextualized historical analysis of the Kuhn-Tucker Theorem in nonlinear programming. The impact of World War II; Historia Mathematica 27 (2000), pp. 331–361.MathSciNetzbMATHCrossRefGoogle Scholar
  69. Hosemann, R.: Verfolgungskurven; in: Walther (ed., 1948–53), volume 3 (1948), pp. 269–307.Google Scholar
  70. Israel, G., & Nurzia, L.: Fundamental trends and conflicts in Italian mathematics between the two World Wars; Archives Internationales d’Histoire des Sciences 39 (1989), pp. 112–143.MathSciNetGoogle Scholar
  71. Jewett, F. B.: The future of scientific research in the postwar world (1947); in: Burnham (1971), pp. 398–413.Google Scholar
  72. Kármán, Th. v.: The problem of resistance in compressible fluids; in: Atti del V Convegno della “Fondazione Alessandro Volta’; Roma 1935; Rome 1936, pp. 5–59.Google Scholar
  73. Kármán, Th. v.: The Engineer grapples with nonlinear problems; Bulletin American Mathematical Society 46 (1940), pp. 615–683.CrossRefGoogle Scholar
  74. Kármán,Th. v.: Tooling up mathematics for engineering; Quarterly of Applied Mathematics 1 (1943), pp. 2–6.Google Scholar
  75. Kármán,Th. v.: The role of fluid mechanics in modern warfare (1943); in: Collected Works IV (1956), pp. 193–205.Google Scholar
  76. Kármán, Th. v.: Supersonic aerodynamics - principles and applications; Journal of the Aeronautical Sciences 14 (1947), pp. 373–409.Google Scholar
  77. Kármán, Th. v.: Aerodynamics. Selected Topics in the Light of Their Historical Development; Ithaca: Cornell University Press 1954.zbMATHGoogle Scholar
  78. Kármán, Th. v.: Collected Works of Theodore von Kármán; London: Butterworths 1956 (volumes I-IV).Google Scholar
  79. Kevles, D. J.: The Physicists. The History of a Scientific Community in Modern America (1977); Cambridge, Mass.: Harvard University Press 1987.Google Scholar
  80. Kragh, H.: Telephone technology and its interaction with science and the military; in: Forman, P., & Sánchez-Ron, J. M. (1996), pp. 37–67.Google Scholar
  81. Lax, P.: The flowering of applied mathematics in America; SIAM Review 31 no. 4 (1989), pp. 533–541.MathSciNetzbMATHCrossRefGoogle Scholar
  82. Lee, L. J.: The origin of the wind tunnel in Europe 1871–1890; Air Power History 45 summer 1998, pp. 6–15.Google Scholar
  83. Levinson, N.: Coding theory: a counter example to G. H. Hardy’s conception of applied mathematics; American Mathematical Monthly 77 (1970), pp. 249–258.MathSciNetzbMATHCrossRefGoogle Scholar
  84. Lorentz, G. G.: Mathematics and politics in the Soviet Union from 1928 to 1953; Journal of Approximation Theory 116 (2002), pp. 169–223.MathSciNetzbMATHCrossRefGoogle Scholar
  85. Low, M. F.: Japan’s secret war? `Instant’ scientific manpower and Japan’s World WarII atomic bomb project; Annals of Science 47 (1990), pp. 347–360.CrossRefGoogle Scholar
  86. Ludwig, K.-H.: Technik and Ingenieure im Dritten Reich; Düsseldorf: Athenäum 1974.Google Scholar
  87. Masani, P. R.: Norbert Wiener 1894–1964; Basel etc.: Birkhäuser 1990.zbMATHCrossRefGoogle Scholar
  88. McArthur, C. W. : Operations Analysis in the U.S. Army Eighth Air Force in World War II; Providence, R. I.: American Mathematical Society, and London: London Mathematical Society 1990.Google Scholar
  89. McShane, E. J., Kelley, J. L. & Reno, F. V.: Exterior Ballistics; Denver: University of Denver Press 1953.zbMATHGoogle Scholar
  90. McVittie, G. C.: The training of applied mathematicians in Britain; in: Weyl, J. F. (ed., 1953), pp. 45–48.Google Scholar
  91. Mehrtens, H.: Angewandte Mathematik and Anwendungen der Mathematik im nationalsozialistischen Deutschland Geschichte and Gesellschaft 12 (1986), pp. 317–347.Google Scholar
  92. Mehrtens, H.: Mathematics and war: Germany, 1900–1945; in Forman, P. & Sánchez-Ron, J. M. (eds., 1996), pp. 87–134.Google Scholar
  93. Meigs, M.C.: Slide Rules and Submarines. American Scientists and Subsurface Warfare in World War II; Honolulu, Hawaii: University Press of the Pacific 1990.Google Scholar
  94. Metropolis, N., Howlett, J., & Rota, G.-C. (eds.): A History of Computing in the Twentieth Century. A Collection of Essays; New York, London etc.: Academic Press 1980.zbMATHGoogle Scholar
  95. Meyer zur Capellen, W.: Mathematische Instrumente 3. ed.; Leipzig: Akademische Verlagsgesellschaft 1949.Google Scholar
  96. Millman, S. (ed.): A History of Engineering and Science in the Bell System. Communication Sciences (1925–1980); AT&T Bell Laboratories 1984.Google Scholar
  97. Miranda, C.: Equazioni alle derivate parziali di tipo ellittico; Berlin: Springer 1955. Morawetz, C.S.: Giants; American Mathematical Monthly 99 (1992), pp. 819–828.MathSciNetCrossRefGoogle Scholar
  98. Morse, M., & Hart, W. L.: Mathematics in the defense program; American Mathematical Monthly 48 (1941), pp. 293–302.MathSciNetCrossRefGoogle Scholar
  99. Moscow University during the Great Patriotic War (Russian, anon.); Moscow: The University of Moscow 1975.Google Scholar
  100. Moulton, F. R.: New Methods in Exterior Ballistics; Chicago: University of Chicago Press 1926.zbMATHGoogle Scholar
  101. Munk, M.: My early aerodynamic research - thoughts and memories; Annual Review of Fluid Mechanics 13 (1981), pp. 1–7.CrossRefGoogle Scholar
  102. Nash, St. G. (ed.): A History of Scientific Computing; New York: ACM Press 1990.Google Scholar
  103. Nastasi, P. (ed.): Per l’archivio della corrispondenza dei matematici italiani: il fondo `Giovanni Gentile’; Progetto Ricerche Storiche e Metodologiche Università Commerciale Luigi Bocconi, Milano 1990, 99 pp.Google Scholar
  104. Newby, J. C.: The history and mathematics of rockets; Physics in Technology 19 (1988), pp. 172–180.CrossRefGoogle Scholar
  105. Nihon no sūgaku 100 nenchi (A Hundred Years History of Mathematics in Japan] (Japanese), 2 vols. Tokyo: Iwanami-Shoten 1983–1984.Google Scholar
  106. Ogibalov, P. M., & Kudrjasova, L. V.: On the establishment and development of Moscow University faculty of mechanics and mathematics (Russian); Istorija i metodologija estestvennych nauk (Matematika/Mechanika) 25 (1980), pp. 3–22.Google Scholar
  107. Ogburn, W. F.: Aviation and international relations; in: Ogburn, W. F. (ed.) Technology and International Relations; Chicago: University of Chicago Press 1949, pp. 86–101.Google Scholar
  108. Orlando, L.: Physics in the 1930s: Jewish physicists’ contribution to the realization of the `new tasks’ of physics in Italy ; Historical Studies in the Physical and Biological Sciences 29 (1998), 1, pp. 141–181.CrossRefGoogle Scholar
  109. Owens, L.: Mathematics and war. Warren Weaver and the Applied Mathematics Panel 1942–1945; in Rowe/McCleary (1989), Vol.II, pp. 287–305.MathSciNetGoogle Scholar
  110. Palmer, S. W.: Peasants into pilots. Soviet air-mindedness as an ideology of dominance; Technology & Culture 41 (2000), pp. 1–26.MathSciNetCrossRefGoogle Scholar
  111. Parshall, K. H., & Rice, A. C. (eds.): Mathematics Unbound: The Evolution of an International Mathematical Research Community 1800–1945; History of Mathematics, Volume 23; Providence: American Mathematical Society 2002.zbMATHGoogle Scholar
  112. Pestre, D.: Physique et physiciens en France 1918–1940; Paris: éditions des archives contemporaines 1984.Google Scholar
  113. Petzold, H.: Moderne Rechenkünstler. Die Industrialisierung der Rechentechnik in Deutschland; München: Beck 1992.Google Scholar
  114. Picard, J.-F.: La république des savants. La recherche française et le C.N.R.S.; Paris: Flammarion 1990.Google Scholar
  115. Picone, M. (1934): L’artiglieria italiana nella guerra mondiale; Roma: Tip.del Senato 1934.Google Scholar
  116. Picone, M.: L’attività dell’Istituto per la Applicazioni des Calcolo nel quadriennio XII-XV E. F.; Società Italiana per il progresso delle scienze 16 (1938), pp. 1–6.Google Scholar
  117. Picone, M. (ed.): Giudizi sull’opera trentennale dell’istituto nazionale per le applicazioni del calcolo; Roma: tipografia Pio X, 1959.Google Scholar
  118. Pyenson, L.: On the military and the exact sciences in France; in: Forman, P., & Sánchez-Ron, J. M. (1996), pp. 135–152.Google Scholar
  119. Rees, M.: The mathematical sciences and World War II; American Mathematical Monthly 87 (1980), pp. 607–621.MathSciNetzbMATHCrossRefGoogle Scholar
  120. Reid, C.: Courant in Göttingen and New York; New York etc.: Springer 1976.zbMATHGoogle Scholar
  121. Richardson, R. G. D.: Applied mathematics and the present crisis; American Mathematical Monthly 50 (1943), pp. 415–423.MathSciNetzbMATHCrossRefGoogle Scholar
  122. Rider, R.: Operational research; in: Grattan-Guinness, I. (ed.) 1994, volume I, pp. 837–842.Google Scholar
  123. Riegels, F. W.: Aerofoil Sections. Results from Wind-tunnel Investigations. Theoretical Foundations; London: Butterworths 1961.Google Scholar
  124. Roland,A Model Research; Volumes 1 & 2, The NASA History Series, Washington, D C: NASA 1985 (also on
  125. Rosser, J. B.: Mathematics and mathematicians in World War II; Notices American Mathematical Society 29 (1982), pp. 509–515.zbMATHGoogle Scholar
  126. Rothrock, D. A.: American mathematicians in war service American Mathematical Monthly 26 (1919), pp. 40–44.MathSciNetGoogle Scholar
  127. Rowe, D., & McCleary, J. (eds.): The History of Modern Mathematics. Volume II: Institutions and Applications; Boston etc: Academic Press 1989.zbMATHGoogle Scholar
  128. Russo, A.: Science and Industry in Italy between the two world wars; Historical Studies in the Physical Sciences 16 (1986), pp. 281–320.CrossRefGoogle Scholar
  129. Salvadori, M. G.: The activity of the Italian National Institute for the Application of Calculus; in: Proceedings of the Fifth International Congress for Applied Mechanics held at Harvard University… 1938, New York: Wiley 1939, pp. 260–264.Google Scholar
  130. Sasaki, Chikara: Science and the Japanese Empire 1868–1945: an overview; in: P. Petitjean et al. (eds.) Science and Empires Dordrecht etc.: Kluwer 1992, pp. 243–246.CrossRefGoogle Scholar
  131. Sasaki, Chikara: The development of mathematical research in twentieth-century Japan, in: Sasaki, C.: Preprint “Collected Papers”, University of Tokyo, 1999, pp. 27–44.Google Scholar
  132. Sasaki, Chikara: The emergence of the Japanese mathematical community in the modern western style, 1855–1945; in Parshall/Rice (2002), pp. 229–252.Google Scholar
  133. Schappacher, N., & Scholz, E. (eds.): Oswald Teichmüller - Leben und Werk; Jahresbericht Deutsche Mathematiker-Vereinigung 94 (1992), pp. 1–39.MathSciNetzbMATHGoogle Scholar
  134. Sears, W. R.: On projectiles of minimum wave drag; Quarterly of Applied Mathematics 4 (1947), pp. 361–366.MathSciNetzbMATHGoogle Scholar
  135. Shannon, C. E. and Weaver, W.: The Mathematical Theory of Communication; Urbana: University of Illinois Press 1949.zbMATHGoogle Scholar
  136. Shewhart, W. A.: Economic Control of Quality of Manufactured Products; New York 1931. Shimao, Eikoh: Some aspects of Japanese science; Annals of Science 46 (1989), pp. 69–91.CrossRefGoogle Scholar
  137. Siegmund-Schultze, R.: Theodor Vahlen - zum Schuldanteil eines deutschen Mathematikers am faschistischen Mißbrauch der Wissenschaft; NTM-Schriftenreihe für Geschichte der Naturwissenschaften Technik und Medizin 21 (1984), 1, pp. 17–32.MathSciNetzbMATHGoogle Scholar
  138. Siegmund-Schultze, R.: Faschistische Pläne zur `Neuordnung’ der europäischen Wissenschaft. Das Beispiel Mathematik; NTM-Schriftenreihe 23 (1986), 2, pp. 1–17.MathSciNetGoogle Scholar
  139. Siegmund-Schultze, R.: Zur Sozialgeschichte der Mathematik an der Berliner Universität; NTM-Schriftenreihe 26 (1989), 1, pp. 49–68.MathSciNetGoogle Scholar
  140. Siegmund-Schultze, R.: Über die Haltung deutscher Mathematiker zur faschistischen Expansions-und Okkupationspolitik in Europa; in: Tschirner, M., & Göbel, H.-W. (eds.): Wissenschaft im Krieg - Krieg in der Wissenschaft Marburg 1990, pp. 189–195.Google Scholar
  141. Siegmund-Schultze, R.: Rockefeller and the Internationalization of Mathematics Between the Two World Wars. Documents and Studies for the Social History of Mathematics in the 20th Century; Basel etc.: Birkhäuser 2001.zbMATHGoogle Scholar
  142. Siegmund-Schultze, R.: The late arrival of academic applied mathematics in the United States: a paradox, theses, and literature NTM (NS.) 11 (2003), pp. 116–127.MathSciNetzbMATHCrossRefGoogle Scholar
  143. Sirinelli, J.-F. (ed.): École normale supérieure. Le livre du bicentenaire; Paris: Presses Universitaires de France 1994.Google Scholar
  144. Suekane, R.: Early history of computing in Japan; in: Metropolis et al. (eds. 1980), pp. 575–578.Google Scholar
  145. Tarwater; J.D. (ed.): The Bicentennial Tribute to American Mathematics 1776–1976; Washington: MAA, 1977.zbMATHGoogle Scholar
  146. Tobies, R.: Zu den Beziehungen deutscher und sowjetischer Mathematiker während der Zeit der Weimarer Republik; Mitteilungen der Mathematischen Gesellschaft der DDR 1985, No.1, pp. 66–80.MathSciNetGoogle Scholar
  147. Todd, J. L.: The prehistory and early history of computation at the U.S. National Bureau of Standards; in: Nash, St. G. (ed.) 1990, pp. 251–268.Google Scholar
  148. Trischler, H.: Luft-und Raumfahrtforschung in Deutschland 1900–1970; Frankfurt/New York: Campus 1992.Google Scholar
  149. Vivian, R.: Statistics in relation to the war; American Mathematical Monthly 26 (1919), pp. 32–35.MathSciNetzbMATHGoogle Scholar
  150. Vogt, A.: Von Petersburg nach Moskau: Zur Geschichte der russisch-sowjetischen Mathematik zwischen 1875 und 1975; in: Henning, A. (ed.): Wissenschaftsgeschichte in Osteuropa; Wiesbaden: Harrassowitz 1998, pp. 165–183.Google Scholar
  151. Wallis, W. A.: The Statistical Research Group, 1942–1945; Journal of the American Statistical Association 75 (1980), pp. 320–330.MathSciNetzbMATHGoogle Scholar
  152. Walther, A. (ed.): Angewandte Mathematik; in: Naturforschung und Medizin in Deutschland 1939–1946. Für Deutschland bestimmte Ausgabe der FIAT Review of German Science; volumes 3–7 (1948–1953), Weinheim: Chemie; Wiesbaden: Dieterich 1953.Google Scholar
  153. Weissinger, J.: Erinnerungen an meine Zeit in der DVL 1937–1945; Jahrbuch Überblicke Mathematik (1985), pp. 105–129.Google Scholar
  154. Weyl, F. J. (ed.): Proceedings of a Conference on Training in Applied Mathematics; AMS and NRC, Columbia University, New York City, 22–24 October 1953, manuscript, 97 pp. (Available in Mathematische Bibliothek Oberwolfach/Schwarzwald, Inv. Nr. 196).Google Scholar
  155. Whittaker, E. T., & Robinson, J.: The Calculus of Observations; London: Blackie 1924. Wiener, N.: I Am a Mathematician; London: Victor Gollancz 1956.Google Scholar
  156. Willers, A.: Mathematische Instrumente ; München, Berlin 1943.zbMATHGoogle Scholar
  157. Wilson, E. B.: Theory of Airplane Encountering Gusts; First Annual Report of the National Advisory Committee for Aeronautics; U.S. Government Printing Office 1915.Google Scholar
  158. Yamazaki, Masakatsu: The mobilization of science and technology during the Second World War in Japan; Historia Scientiarum (2)5 (1995), No.1, pp. 167–181.Google Scholar
  159. Zant, J. H.: Mathematics in the Army Specialized Training Program; Journal of Engineering Education 34 (1943/44), pp. 703–706.Google Scholar
  160. Zienkiewicz, O. C.: Achievements and some unsolved problems of the finite element method; International Journal for Numerical Methods in Engineering 47 (2000), pp. 9–28.MathSciNetzbMATHCrossRefGoogle Scholar
  161. Zdravkovska, S., & Duren, P. L. (eds.): Golden Years of Moscow Mathematics; History of Mathematics, vol. 6, Providence: American Mathematical Society 1993.Google Scholar

Copyright information

© Springer Basel AG 2003

Authors and Affiliations

  • Reinhard Siegmund-Schultze
    • 1
  1. 1.Agder University CollegeKristiansandNorway

Personalised recommendations