Advertisement

Effect of aging on glutathione metabolism. Protection by antioxidants

  • J. Viña
  • J. Sastre
  • V. Anton
  • L. Bruseghini
  • A. Esteras
  • M. Asensi
Part of the EXS book series (EXS, volume 62)

Summary

The free radical, theory of aging suggests that oxygen free radicals may be involved in the aging process. Thus, changes in antioxidant mechanisms may occur with aging. Since glutathione is one of the most effective antioxidant systems in the cell, its metabolism may change with aging. In this chapter we describe experiments which show the involvement of glutathione in the aging process and which provide a rationale for the administration of antioxidants to old organisms to protect them against some of the changes that occur with aging.

Keywords

Glutathione Metabolism Glutathione Synthesis Free Radical Theory Senile Cataract Glutathione Redox Status 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Turk, W., Stohs, S. J., El-Rashidy, F. H., and Othman, S. (1987) Changes in glutathione and its metabohzing enzymes in human erithrocytes and lymphocytes with age. J. Pharai. Pharmacol. 39: 13–16.CrossRefGoogle Scholar
  2. Allen, R. G., and Sohal, R. S. (1986) Role of glutathione in the aging and development of insects, in: Insect Aging. Collatz, K. G. and Sohal, R. S. Eds. Springer Verlag, Berlin/ Heidelberg, pp. 168–181.CrossRefGoogle Scholar
  3. Barja de Quiroga, G., Perez-Campo R., and Lopez Torres, M. (1990) Anti-oxidant defences and peroxidation in liver and brain of aged rats. Biochem. J. 272: 247–250.Google Scholar
  4. Benzi, G., Marzatico, F., Pastoris, O., and Villa, R. F. (1989) Relationship between aging, drug treatment and the cerebral enzymatic antioxidant system. Exp. Geront. 24: 137–148.CrossRefGoogle Scholar
  5. Cutler, R. G. (1991) Antioxidants and aging. Amer. J. Clin. Nutr. 53: S373-S379.Google Scholar
  6. Ferrer, J. V., Gaseó, E., Sastre, J., Pallardó, F. V., Asensi, M., and Viña, J. (1990) Age-related changes in glutathione synthesis in the eye lens. Biochem. J. 269: 531–534.PubMedGoogle Scholar
  7. Ferrer, J. V., Sastre, J., Pallardó, F. V., Asensi, M., Antón, V., Estrela, J. M., Viña, J., and Miquel, J. (1991) Senile cataract: a review on free radical related pathgogenesis and antioxidant prevention. Archs Geront. Geriat. 13: 51–59.CrossRefGoogle Scholar
  8. Frei, B., Stocker, R., and Ames, B. (1990) Antioxidant defenses and Hpid peroxidation in human blood plasma. Proc. Natl. Acad. Sci USA 85: 9748–9752.CrossRefGoogle Scholar
  9. Gilbert, H. (1984) Redox control of enzyme activities by thiol/disulfide exchange. Meth. Enzymol. 107: 330–335.PubMedCrossRefGoogle Scholar
  10. Gilbert, H. F. (1982) Biological disulfides: The third messenger? J. Biol. Chem. 257: 12086–12091.PubMedGoogle Scholar
  11. Goldschmidt, L. (1970) Seasonal variations in red cell glutathione levels with aging in mental patients and normal controls. Proc. Soc. Exp. Biol. Med. 133: 555–559.PubMedGoogle Scholar
  12. Harman, D. (1981) The free radical theory of aging. Proc. Natl. Acad. Sci. USA 78: 7124–7128.PubMedCrossRefGoogle Scholar
  13. Harman, D. (1991) The aging process - major risk factor for disease and death. Proc. Natl. Acad. Sci. USA 88: 5360–5363.PubMedCrossRefGoogle Scholar
  14. Hazelton, G. A., and Lang, C. A. (1980) Glutathione contents of tissues in the aging mouse. Biochem. J. 188: 25–30.PubMedGoogle Scholar
  15. Lauterburg, B. H., Vaishnav, Y., Stillwell, W. G., and Mitchell, J. (1980) The effects of age and glutathione depletion on hepatic glutathione turnover in vivo determined by acetaminophen probe analysis. J. Pharmacol. Exp. Ther. 213: 54–58.PubMedGoogle Scholar
  16. Miquel, J., and Economos, A. C. (1979) Favorable effects of the antioxidants sodium and magnesium thiaxolidine carboxyláte on the vitality and life span of Drosophila and mice. Exp. Geront. 14: 279–285.CrossRefGoogle Scholar
  17. Pinto, R. E., and Bartley, W. (1969) A negative correlation between oxygen uptake and glutathione oxidation in rat liver homogenates. Biochem. J. 114: 5–9.PubMedGoogle Scholar
  18. Reed, D. J., and Orrenius, S. (1977) The role of methionine in glutathione biosynthesis by isolated hepatocytes. Biochem. Biophys. Res. Commun. 77: 1257–1264.PubMedCrossRefGoogle Scholar
  19. Richie, J. P., and Lang, C. A. (1988) A decrease in cysteine levels causes the glutathione deficiency of the aging mosquito. Proc. Soc. Exp. Biol. Med. 187: 235–240.PubMedGoogle Scholar
  20. Santa Maria, C., and Machado, A., (1987) Effects of development and ageing on pulmonary NADP-cytochrome c reductase, glutathione peroxidase, glutathione reductase and thioredoxin reductase activities in male and female rats. Mech. Ageing Dev. 37: 183–195.CrossRefGoogle Scholar
  21. Sies, H. (1986) Biochemistry of oxidative stress. Angew. Chem. 25: 1058–1071.CrossRefGoogle Scholar
  22. Sies, H., Barto, H. G. M., Burk, R. F., and Waydhas, Ch. (1978) Glutathione efflux from perfused rat liver after phénobarbital treatment, during drug oxidations, and in selenium deficiency. Eur. J. Biochem. 89: 113–118.PubMedCrossRefGoogle Scholar
  23. Tolonen, M., Sarna, S., Halme, M., Tuominen, S., Westermarck, T., Nordberg, U., Keinonen, M., and Schrijver, J. (1988) Antioxidant supplementation decreases TBA reactants in serum of elderly. Biol. Tract Elements 17: 221–228.CrossRefGoogle Scholar
  24. Viña, J., (Ed.) (1990). Glutathione: Metabolism and Physiological Functions. CRC Press, Boston.Google Scholar
  25. Viña, J., Hems, R., and Kreds, H. A. (1978) Maintenance of glutathione content in isolated hepatocytes. Biochem. J. 170: 627–630.PubMedGoogle Scholar
  26. Viña, J., Perez, C., Furukawa, T., Palacin, M., and Viña, J. R. (1989) Effect of oral glutathione on hepatic glutathione levels. Br. J. Nutr. 62: 663–691.CrossRefGoogle Scholar
  27. Yen, T. C., Chen, Y. S., King, K. L., Yeh, S. H., and Wei, Y. H. (1989) Liver mitochondrial respiratory functions decline with age. Biochem. Biophys. Res. Commun. 165: 994–1003CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1992

Authors and Affiliations

  • J. Viña
    • 1
  • J. Sastre
    • 1
  • V. Anton
    • 1
  • L. Bruseghini
    • 2
  • A. Esteras
    • 2
  • M. Asensi
    • 1
  1. 1.Departamento de Fisiología, Facultad de MedicinaUniversidad de ValenciaSpain
  2. 2.Zambon LaboratoriesSanta Perpetua (Barcelona)Spain

Personalised recommendations