Advertisement

Abstract

As background for our discussion we recall a result from [10]. First a few definitions. Let l n denote the class of cardinal spline functions S(x) of degree n (n≧1) having their knots at the integer points of the real axis. This means that S(x)∈l n, provided that the restriction of S(x) to every unit interval (v, v + 1) is a polynomial of degree n at most.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. H. Ahlberg and E. N. Nilson, Polynomial splines on the real line. J. Approximation Theory 3 (1970), 398–409.CrossRefGoogle Scholar
  2. [2]
    L. Carlitz, Eulerian numbers and polynomials. Math. Mag. 32 (1959), 247–260.CrossRefGoogle Scholar
  3. [3]
    H. B. Curry and I. J. Schoenberg, On Pôlya frequency functions IV. The fundamental spline functions and their limits. J. Analyse Math. 17 (1966), 71–107.CrossRefGoogle Scholar
  4. [4]
    L. Euler, Institutionis Calculi Differentialis, vol. II. Petersburg 1755.Google Scholar
  5. [5]
    G. Frobenius, Über die Bernoullischen Zahlen und die Eulerschen Polynome. Sitzungsberichte der Preussischen Akad. der Wiss. Phys.-Math. K1. (1910), 809–847. Also in volume 3 of Collected Works, 440-478.Google Scholar
  6. [6]
    E. Hille, Analytic function theory, vol. II. Ginn and Company, Boston 1962.Google Scholar
  7. [7]
    N. E. Nörlund, Vorlesungen über Differenzenrechnung. Springer, Berlin 1924.Google Scholar
  8. [8]
    W. Quade and L. Collatz, Zur Interpolationstheorie der reellen periodischen Funktionen. Sitzungs ber. der Preuss. Akad. der Wiss., Phys.-Math. Kl, (1938), 383–429.Google Scholar
  9. [9]
    I. J. Schoenberg, Cardinal interpolation and spline functions. J. Approximation Theory 2 (1969), 167–206.CrossRefGoogle Scholar
  10. [10]
    I. J. Schoenberg, Cardinal interpolation and spline functions II. Interpolation of data of power growth. MRC-Tech. Sum. Rep. 1104, Sept. 1970. To appear in J. Approximation Theory.Google Scholar
  11. [11]
    J. M. Whittaker, Interpolatory functions theory. Cambridge Tract 33, University Press. Cambridge 1935.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1972

Authors and Affiliations

  • I. J. Schoenberg
    • 1
  1. 1.Math. Research CenterUniversity of WisconsinMadisonUSA

Personalised recommendations