Abstract

For reasons explained in Chapter I, our studies have so far been confined to linear systems

with symmetric and positive definite coefficient matrix A. b is the vector of the constant terms, x is the vector of the unknowns, but in this chapter, the letter x shall denote an arbitrary point of the N- dimensional space whereas the solution of (II. 1) will be denoted by — A-1b. The order of the system will be denoted throughout by JV, whereas n is used for the number of different eigenvalues of A, which may be smaller than N.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Flanders, D. A. and Shortly, G., Numerical Determination of Fundamental Modes, J. appl. Phys. 21, 1326–1332 (1950).CrossRefGoogle Scholar
  2. [2]
    Frankel, S., Convergence Rates of Iterative Treatments of Partial Differential Equations, MTAC 4, 65–75 (1950).Google Scholar
  3. [3]
    Gershgorin, S., Abgrenzung der Eigenwerte einer Matrix, Bull. Acad. Sei. USSR. Leningrad, Classe math 7, 749–754 (1931).Google Scholar
  4. [4]
    Henrici, P., The Quotient-Difference Algorithm, NBS Appl. Math. Series 49, 23–46 (1958).Google Scholar
  5. [5]
    Hestenes, M. R. and Stein, M., The Solution of Linear Equations by Minimization, NBS, NAML Report 52–45 (1951).Google Scholar
  6. [6]
    Hestenes, M. R. and Stiefel, E., Methods of Conjugate Gradients for Solving Linear Systems, NBS, J. of Res. 49, 409–436 (1952).Google Scholar
  7. [7]
    Hochstrasser, U., Die Anwendung der Methode der konjugierten Gradienten und ihrer Modifikationen auf die Lösung linearer Randwertprobleme, Diss. ETH (Zürich 1954 ).Google Scholar
  8. [8]
    Lanczos, C., Solution of Systems of Linear Equations by Minimized Iteration, NBS, J. of Res. 49, 33–53 (1952).Google Scholar
  9. [9]
    Richardson, L. F., The Approximate Arithmetical Solution by Finite Differences, Phil. Trans. Roy. Soc., London [A] 210, 307–357 (1911).CrossRefGoogle Scholar
  10. [10]
    Rutishauser, H., Der Quotienten-Differenzen-Algorithmus, ZAMP 5, 233–251 (1954).CrossRefGoogle Scholar
  11. [11]
    Rutishauser, H., Der Quotienten-Differenzen-Algorithmus ([Mitt. Nr. 7, Inst, angew. Math. ETH] Birkhäuser, Basel 1957 ).Google Scholar
  12. [12]
    Stein, M., Gradient Methods in the Solution of Systems of Linear Equations, NBS, J. of Res. 48, 407–413 (1952).Google Scholar
  13. [13]
    Stiefel, E., Einige Methoden der Relaxationsrechnung, ZAMP 3, 1–33 (1952).CrossRefGoogle Scholar
  14. [14]
    Stiefel, E., Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme, Comm. Math. Helv. 29, 157–179 (1955).CrossRefGoogle Scholar
  15. [15]
    Stiefel, E., Kernel Polynomials in Linear Algebra and their Numerical Applications, NBS, Appl. Math. Series 49, 1–22 (1958).Google Scholar
  16. [16]
    Young, D., On Richardsorfs Method for Solving Linear Systems with Positive Definite Matrices,]. Math. Phys. 32, 243–255 (1954).Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1959

Authors and Affiliations

  • H. Rutishauser

There are no affiliations available

Personalised recommendations