For reasons explained in Chapter I, our studies have so far been confined to linear systems

with symmetric and positive definite coefficient matrix A. b is the vector of the constant terms, x is the vector of the unknowns, but in this chapter, the letter x shall denote an arbitrary point of the N- dimensional space whereas the solution of (II. 1) will be denoted by — A-1b. The order of the system will be denoted throughout by JV, whereas n is used for the number of different eigenvalues of A, which may be smaller than N.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Flanders, D. A. and Shortly, G., Numerical Determination of Fundamental Modes, J. appl. Phys. 21, 1326–1332 (1950).CrossRefGoogle Scholar
  2. [2]
    Frankel, S., Convergence Rates of Iterative Treatments of Partial Differential Equations, MTAC 4, 65–75 (1950).Google Scholar
  3. [3]
    Gershgorin, S., Abgrenzung der Eigenwerte einer Matrix, Bull. Acad. Sei. USSR. Leningrad, Classe math 7, 749–754 (1931).Google Scholar
  4. [4]
    Henrici, P., The Quotient-Difference Algorithm, NBS Appl. Math. Series 49, 23–46 (1958).Google Scholar
  5. [5]
    Hestenes, M. R. and Stein, M., The Solution of Linear Equations by Minimization, NBS, NAML Report 52–45 (1951).Google Scholar
  6. [6]
    Hestenes, M. R. and Stiefel, E., Methods of Conjugate Gradients for Solving Linear Systems, NBS, J. of Res. 49, 409–436 (1952).Google Scholar
  7. [7]
    Hochstrasser, U., Die Anwendung der Methode der konjugierten Gradienten und ihrer Modifikationen auf die Lösung linearer Randwertprobleme, Diss. ETH (Zürich 1954 ).Google Scholar
  8. [8]
    Lanczos, C., Solution of Systems of Linear Equations by Minimized Iteration, NBS, J. of Res. 49, 33–53 (1952).Google Scholar
  9. [9]
    Richardson, L. F., The Approximate Arithmetical Solution by Finite Differences, Phil. Trans. Roy. Soc., London [A] 210, 307–357 (1911).CrossRefGoogle Scholar
  10. [10]
    Rutishauser, H., Der Quotienten-Differenzen-Algorithmus, ZAMP 5, 233–251 (1954).CrossRefGoogle Scholar
  11. [11]
    Rutishauser, H., Der Quotienten-Differenzen-Algorithmus ([Mitt. Nr. 7, Inst, angew. Math. ETH] Birkhäuser, Basel 1957 ).Google Scholar
  12. [12]
    Stein, M., Gradient Methods in the Solution of Systems of Linear Equations, NBS, J. of Res. 48, 407–413 (1952).Google Scholar
  13. [13]
    Stiefel, E., Einige Methoden der Relaxationsrechnung, ZAMP 3, 1–33 (1952).CrossRefGoogle Scholar
  14. [14]
    Stiefel, E., Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme, Comm. Math. Helv. 29, 157–179 (1955).CrossRefGoogle Scholar
  15. [15]
    Stiefel, E., Kernel Polynomials in Linear Algebra and their Numerical Applications, NBS, Appl. Math. Series 49, 1–22 (1958).Google Scholar
  16. [16]
    Young, D., On Richardsorfs Method for Solving Linear Systems with Positive Definite Matrices,]. Math. Phys. 32, 243–255 (1954).Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1959

Authors and Affiliations

  • H. Rutishauser

There are no affiliations available

Personalised recommendations