Advertisement

Abstract

Experimental results in the published literature show that at low normal stress the shear stress required to slide one rock over another varies widely between experiments. This is because at low stress rock friction is strongly dependent on surface roughness. At high normal stress that effect is diminished and the friction is nearly independent of rock type. If the sliding surfaces are separated by gouge composed of Montmorillonite or vermiculite the friction can be very low.

Key words

Rock mechanics Friction Faulting surfaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barton, M. (1973), Review of a new shear strength criterion for rock joints, Eng. Geol. 7, 287–332.CrossRefGoogle Scholar
  2. Byerlee, J. D. (1967), Frictional characteristics of granite under high confining pressure, J. Geophys. Res. 72, 3639–3648.CrossRefGoogle Scholar
  3. Byerlee, J. D. (1968), Brittle ducfile transition in rock, J. Geophys. Res. 73, 4741–4650.CrossRefGoogle Scholar
  4. Byerlee, J. D. and Brace, W. F. (1968), Stick-slip stable sliding and earthquakes — effect of rock type, pressure, strain rate and stiffness, J. Geophys. Res. 73, 6031–6037.CrossRefGoogle Scholar
  5. Byerlee, J. D. (1970), Static and kinetic function of granite at high normal stress, Int. S. Rock Mich. Min. Sci. 7, 577–582.CrossRefGoogle Scholar
  6. Byerlee, J. D. (1975), The fracture strength and frictional strength of Weber sandstone, Inc. J. Rock Mich. Min. Sci. 12, 1–4.CrossRefGoogle Scholar
  7. Dieterich, J. H. (1972), Time dependent friction in rock, J. Geophys. Res. 77, 3690–3697.CrossRefGoogle Scholar
  8. Donath, F. D., Fruth, L. S. and Olsson, W. A. (1972), Experimental study of frictional properties of faults, 14th Symposium on rock mechanics, University Park, Penn.Google Scholar
  9. Edmond, O. and Murrell, S. A. F. (1971), Experimental observations and rock fracture at pressures up to 7 kb and the implications for earthquake faulting, Tectonophysics 16, 71–87.CrossRefGoogle Scholar
  10. Engelder, J. T. (1974), Coefficient of friction for sandstone sliding on quartz gouge, Advances in rock Mech. Proc. Third Congress Int. Soc. Rock Mech., Denver, Part A, p. 499.Google Scholar
  11. Handin, J. (1969), On the Coulomb-Mohr failure criterion, J. Geophys. Res. 74, 5343–5348.CrossRefGoogle Scholar
  12. Hoskins, E. R., Jaeger, J. C. and Rosengren, K. (1968), A medium scale direct friction experiment, Int. J. Rock Mech. Min. Sci. 4, 219–227.Google Scholar
  13. Jackson, R. E. and Dunn, D. E. (1974), Experimental sliding friction and cataclasis of foliated rocks, Int. J. Rock Mech. Sci. 11, 235–249.CrossRefGoogle Scholar
  14. Jaeger, J. C. and Cook, M. G. W., Fundamentals of Rock Mechanics, (Methuen, London 1969), Chapter III.Google Scholar
  15. Jaeger, J. C., The behaviour of closely jointed rock, Proc. 11th Symp. Rock Mech. (Berkeley 1970), Chapter 4, pp. 57-68.Google Scholar
  16. Jaeger, J. C. (1959), The frictional properties of joints in rock, Geophys. pura appl. 43, 148–158.CrossRefGoogle Scholar
  17. Jaeger, J. C. and Rosengren, K. J. (1969), Friction and sliding of joints, Proc. Aust. Inst. Min. Metall. MO229, 93–104.Google Scholar
  18. Jaeger, J. C. (1971), Friction of rocks and stability of rock slopes, Geotechnique 21, 97–134.CrossRefGoogle Scholar
  19. La Fountain and Dunn, D. E. (1974), Effect of anisotrophy on the coefficient of sliding friction in schistose rocks, Int. J. Rock Mech. Min. Sci. 11, 459–464.CrossRefGoogle Scholar
  20. Lane, K. S., and Heck, W. J. (1964), Triaxial testing for strength of rock joints, Proc. 6th Symp. Rock Mech. Rolla, pp. 98-108.Google Scholar
  21. Logan, J. M., Iwasaki, T., Friedman, M. and King, S. A. (1973), Experimental investigations of sliding friction in multilithologic specimens, Geological Factors in Rapid Excavations, (Ed. Pincus), Geol. Soc. Am. Eng. Case History q, pp. 55-67.Google Scholar
  22. Murrell, S. A. F. (1965), The effect of triaxial stress systems on the strength of rocks at atmospheric temperatures, J. Geophys. R. Ast. Soc. 10, 231–281.CrossRefGoogle Scholar
  23. Onaka, M. (1975), Frictional characteristics of typical rocks, J. Phys. Earth 23, 87–112.CrossRefGoogle Scholar
  24. Scholz, C. H. and Engelder, J. T. (1976), The role of asperity indentation and ploughing in rock friction — I, Asperity creep and stick-slip, Int. Rock Mech. Min. Sci. 13, 149–154.CrossRefGoogle Scholar
  25. Summers, R. and Byerlee, J. (1977), A note on the effect of fault gouge composition on the stability of frictional sliding, Int. J. Rock Mech. Min. Sci. (in press).Google Scholar
  26. Zoback, M. and Byerlee, J. (1976), A note on the deformational behavior and permeability of crushed granite, Int. J. Rock Mech. Min. Sci. 13, 291–294.CrossRefGoogle Scholar
  27. Summers, R. and Byerlee, J. (1977), Unpublished data on the friction of clay minerals.Google Scholar
  28. Simkin, T. E., The similarities of static and kinetic friction, in Surfaces and Interfaces, (Ed. Weiss), (Syracuse University Press, 1967).Google Scholar
  29. Bowden, F. and Tabor, D., The Friction and Lubrication of Solids, (Oxford University Press, 1950).Google Scholar
  30. Wang, Chi-Yuen, Goodman, R. E. and Sundaran, P. M. (1975), Variations of V p and V s in granite premonitory to shear rupture and stick-slip sliding: Applications to earthquake prediction, Geophys. Res. Letters 2, 309–311.CrossRefGoogle Scholar
  31. Scholz, C., Molnar, P. and Johnson, Tracey (1972), Detailed studies of frictional sliding of granite and implications for the earthquake mechanism, J. Geophys. Res. 77, 6392–6406.CrossRefGoogle Scholar
  32. Barton, H. (1976), The shear strength of rock and rock joints, Int. J. Rock Mech. Min. Sci. 13, 255–279.CrossRefGoogle Scholar
  33. Wu, F. T., Blatter, L. and Roberson, H. (1975), Clay gouges in the San Andreas fault system and their possible implications, Pure appl. Geophys. 113, 87–95.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1978

Authors and Affiliations

  • J. Byerlee
    • 1
  1. 1.U.S. Geological SurveyMenlo ParkUSA

Personalised recommendations