On the Oscillation Theorems of Pringsheim and Landau

  • Paul T. Bateman
  • Harold G. Diamond
Part of the Trends in Mathematics book series (TM)

Abstract

Our theme is a relation between the sign of a real function and the analytic behaviour of its associated generating function at a special point on the boundary of convergence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robert J. Anderson and Harold M. Stark, Springer LNM 899 (1981), 79–106.MathSciNetGoogle Scholar
  2. 2.
    Paul T. Bateman, L’Enseignement Math. 43 (1997), 1–4.MathSciNetGoogle Scholar
  3. 3.
    Hubert Delange, Lecture at the International Number Theory Conference, Zakopane-Koscielisko, Poland, 7 July 1997.Google Scholar
  4. 4.
    Paul Erdös and Wolfgang H.J. Fuchs, J. London math. Soc. 31 (1956), 67–73.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Carl-Erik Fröberg, Nordisk Tidskr Informationsbehandlung (BIT) 6 (1966), 191–211.MATHGoogle Scholar
  6. 6.
    Jacques Hadamard, La Série de Taylor et son Prolongement Analytique, Gauthier-Villars, Paris (1901).MATHGoogle Scholar
  7. 7.
    A.E. Ingham, The Distribution of Prime Numbers, Cambridge University Press (1932).Google Scholar
  8. 8.
    A.E. Ingham, Amer. J. Math. 64 (1942), 313–319.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Edmund Landau, Math. Ann. 61 (1905), 527–550.MATHCrossRefGoogle Scholar
  10. 10.
    Edmund Landau, Sitz. Preuss. Akad. Wiss. Berlin (1906), 314–320.Google Scholar
  11. 11.
    Alfred Pringsheim, Math. Ann. 44 (1894), 41–56.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Erhard Schmidt, Math. Ann. 57 (1903), 195–204.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Harold M. Stark, Proc. Amer. math. Soc. 17 (1966), 1211–1214.MathSciNetMATHGoogle Scholar
  14. 14.
    John Steinig, Comment. Math. HeIv. 44 (1969), 385–400.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Giulio Vivanti, Rivista di Matematica 3 (1893), 111–114.Google Scholar
  16. 16.
    Giulio Vivanti, Teoria della funzioni analitiche, Hoepli, Milano (1901).Google Scholar
  17. 17.
    Norbert Wiener and Aurel Wintner, Rev. Math. Guyana 2 (1956), 53–59.MathSciNetGoogle Scholar

Copyright information

© Hindustan Book Agency (India) and Indian National Science Academy 2000

Authors and Affiliations

  • Paul T. Bateman
    • 1
  • Harold G. Diamond
    • 2
  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA
  2. 2.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations