Advertisement

Number Theory pp 301-314 | Cite as

A Report on Artin’s Holomorphy Conjecture

  • Dipendra Prasad
  • C. S. Yogananda
Part of the Trends in Mathematics book series (TM)

Abstract

The purpose of this paper is to present a report on the current status of Artin’s holomorphy conjecture. For a fascinating account of how Artin was led to defining his L-series and his ‘reciprocity law’ see [19].

Keywords

Modular Form Galois Group Number Field Cusp Form Irreducible Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Artin, Über die Zetafunktionen gewisser algebraischer Zahlkörper, Math. Ann. 89 (1923), 147–156.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    E. Artin, Über eine neue Art von L-reihen, Hamb. Abh. (1923), 89–108.Google Scholar
  3. [3]
    E. Artin, Beweis des allgemeinen Reziprozitätsgesetzes, Hamb. Abh. 5 (1927), 353–363.zbMATHCrossRefGoogle Scholar
  4. [4]
    E. Artin, Zur Theorie der L-Reihen mit allgemeinen Gruppencharakteren, Hamb. Abh. 8 (1930), 292–306.zbMATHCrossRefGoogle Scholar
  5. [5]
    R. Brauer, On the zeta functions of algebraic number fields, Amer. J. Math. 69 (1947), 243–250.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    R. Brauer, On Artin’s L-series with general group characters, Ann. of Math. 48 (1947), 502–514.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    J. Buhler, Icosahedral Galois Representations, Lecture Notes in Mathematics 654 Springer-Verlag, 1978.Google Scholar
  8. [8]
    K. Buzzard and Taylor, R., Companion forms and weight one forms, preprint, 1997.Google Scholar
  9. [9]
    W. Duke, The dimension of the space of cusp forms of weight one, International Math. Res. Notices, No. 2, (1995), 99–109.MathSciNetCrossRefGoogle Scholar
  10. [10]
    G. Frey, On Artin’s Conjecture for Odd 2-Dimensional Representations, Lecture Notes in Mathematics 1585 Springer-Verlag, 1994.Google Scholar
  11. [11]
    R. Foote and Murty, V.K., Zeros and poles of Artin L-series, Math. Proc. Camb. Phil. Soc. (1989), 105,5,5–11.Google Scholar
  12. [12]
    E. Hecke, Über eine neue Anwendung dur Zetafunktion auf die Arithmetik der Zahlkörper, Göttinger Nachrichten (1917), 90–95.Google Scholar
  13. [13]
    C. Khare, Remarks on mod p forms of weight 1, International Math. Research Notices (1997), No. 3, 127–133.MathSciNetCrossRefGoogle Scholar
  14. [14]
    G.O. Michler, On Artin L-series of irreducible characters of the symmetric group S n, Algebra and Number Theory, Ed.: G. Frey and J. Ritter, Walter de Gruyter (1994), 153–163.Google Scholar
  15. [15]
    M. Ram Murty, A motivated introduction to the Langlands’ Programme, Advances in Number Theory, Ed.: F. Gouvea and N. Yui, Clarendon Press, Oxford (1993), 37–66.Google Scholar
  16. [16]
    J.-P. Serre, Modular forms of weight one and Galois representations, in: Algebraic Number Theory,edited by Frohlich, Academic Press, 193–268.Google Scholar
  17. [17]
    H. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135–152.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    N.I. Shephered-Barron and Taylor, R., Mod 2 and Mod 5 icosahedral representations, Journal of the AMS, volume 10 (1997), 283–298.Google Scholar
  19. [19]
    J. Tate, The general reciprocity law, Mathematical developments arising from Hilbert Problems, volume 27 (AMSPSPM series), 1976. Ed.: F.E. Browder, 311–322.Google Scholar
  20. [20]
    J. Tate, Les conjetures de Stark sur les Fonctions L d’Artin en s = 0, Progress in Mathematics vol. 47 Birkhauser, 1984.Google Scholar
  21. [21]
    R. Taylor, Icosahedral Galois Representations, Olga Taussky-Todd: in memoriam. Pacific Journal of Mathematics (1997), 337–347.Google Scholar
  22. [22]
    K. Uchida, On Artin’s L-functions, Tohoku Math. J. 27 (1975), 75–81.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    R.W. van der Waal, On a conjecture of Dedekind on zeta functions, Indag. Math. 37 (1975), 83–86.Google Scholar

Copyright information

© Hindustan Book Agency (India) and Indian National Science Academy 2000

Authors and Affiliations

  • Dipendra Prasad
    • 1
  • C. S. Yogananda
    • 2
  1. 1.Mehta Research Institute of Mathematics & Math. PhysicsJhusi AllahabadIndia
  2. 2.Department of Mathematics Indian Institute of ScienceOlympaid Cell (NBHM)BangaloreIndia

Personalised recommendations