Advertisement

Spatial Structure of Rabbit Liver Metallothionein-2 in Solution by NMR

  • Gerhard Wagner
  • M. H. Frey
  • D. Neuhaus
  • E. Wörgötter
  • W. Braun
  • M. Vasak
  • J. H. R. Kägi
  • K. Wüthrich
Chapter
Part of the Experientia Supplementum book series (EXS, volume 52)

Abstract

Sequence-specific assignments of the proton spin systems of (Cd7) rabbit liver metallothionein-2 were obtained with homonuclear two-dimensional nuclear magnetic resonance techniques. On the basis of the NMR data the amino acid sequence had to be modified in six positions, and it was found that the protein consists of 62 rather than 61 residues. Through-bond connectivities between the metals and sequentially assigned cysteine residues were obtained with two-dimensional heteronuclear 1H-113Cd correlated spectroscopy. This information, and distance constraints obtained from nuclear Overhauser enhancement spectra were used as input for distance geometry calculations of the spatial polypeptide fold. The polypeptide chain forms two domains which enclose a three-metal cluster and a four-metal cluster, respectively. The metal coordination within the clusters is markedly different from that of (Cd5, Zn2)-MT-2 from rat liver as determined by X-ray crystallography (Furey, et al., 1986) i.e. in the two structures different metal-cysteine combinations prevail for 5 of the 12 connectivities in the three-metal cluster and for 14 of the 16 connectivities in the four-metal cluster.

Keywords

Nuclear Magnetic Resonance Spin System Nuclear Magnetic Resonance Data Distance Constraint Nuclear Magnetic Resonance Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Williamson, M., Havel, T.F. and Wüthrich, K. (1985) J. Mol. Biol. 182, 295–315.CrossRefGoogle Scholar
  2. 2.
    Braun, W., Wagner, G., Wörgötter, E., Vasak, M., Kägi, J.H.R., and Wüthrich, K. (1986) J. Mol. Biol. 187, 125–129.CrossRefGoogle Scholar
  3. 3.
    Aue, W.P., Bartholdi, E. and Ernst, R.R. (1976) J.Chem. Phys. 64, 2229–2246.CrossRefGoogle Scholar
  4. 4.
    Anil Kumar, Ernst, R.R. and Wüthrich, K. (1980) Biochem. Biophys. Res. Comm. 95, 1–6.CrossRefGoogle Scholar
  5. 5.
    Dubs, A., Wagner, G. and Wüthrich, K. (1979) Biochim. Biophys. Acta 577, 177–194.CrossRefGoogle Scholar
  6. 6.
    Wagner, G., Anil Kumar and Wüthrich, K. (1981) Eur. J. Biochem. 114, 375–384.CrossRefGoogle Scholar
  7. 7.
    Wüthrich, K., Wider, G., Wagner, G. and Braun, W. (1982) J. Mol. Biol. 155, 311–319.CrossRefGoogle Scholar
  8. 8.
    Wagner, G. and Wüthrich, K. (1982) J. Mol. Biol. 155, 347–366.CrossRefGoogle Scholar
  9. 9.
    Havel, T.F. and Wüthrich, K. (1984) Bull. Math. Biol. 46 673–698.Google Scholar
  10. 10.
    Braun, W. and Go, N. (1985) J.Mol. Biol., in press.Google Scholar
  11. 11.
    Kägi, J.H.R., Himmelhoch, S.R., Whanger, P.D., Bethune, J.L. and Vallee, B.L. (1974) J.Biol. Chem. 249, 3537–3542.Google Scholar
  12. 12.
    Vasak, M., Wagner, G., Kägi, J.H.R. and Wüthrich, K. to be published.Google Scholar
  13. 13.
    Vasak, M., Hawkes, G.E., Nicholson, J.K. and Sadler, P.J. (1985) Biochemistry 24, 740–747.CrossRefGoogle Scholar
  14. 14.
    Neuhaus, D., Wagner, G., Vasak, M., Kägi, J.H.R. and Wüthrich, K. (1985) Eur. J. Biochem. 151, 257–273.CrossRefGoogle Scholar
  15. 15.
    Neuhaus, D., Wagner, G., Vasak, M., Kägi, J.H.R. and Wüthrich, K. (1984) Eur. J. Biochem. 143, 659–667.CrossRefGoogle Scholar
  16. 16.
    Kimura, M., Otaki, N. and Imano, M. (1979) in Metallothionein (Kägi, J.H.R. and Nordberg, M., eds.) pp. 163–168, Birkhäuser, Basel.CrossRefGoogle Scholar
  17. 17.
    Wagner, G., Neuhaus, D., Wörgötter, E., Vasak, M., Kägi, J.H.R. and Wüthrich, K. (1986) Eur. J. Biochem. 157, 275–289.CrossRefGoogle Scholar
  18. 18.
    Hunziker, P.E., Känzig, A., Kaur, P. and Kägi, J.H.R. (1986) Proc. 2nd Int. Meeting on Metallothionein (Kägi, J.H.R. ed.), Birkhäuser, Basel.Google Scholar
  19. 19.
    Gedamu, L., Varshney, U., Jahroudi, N., Foster, R. and Sadhu, C. (1986) Proc. 2nd int. meeting on Metallothionein (Kägi, J.H.R., ed.), Birkhäuser, Basel.Google Scholar
  20. 20.
    Frey, M., Wagner, G., Vasak, M., Sorensen, O. Neuhaus, D., Wörgötter, E., Kägi, J.H.R., Ernst, R.R. and Wüthrich, K. (1985) J. Am. Chem. Soc. 107, 6847–6851.CrossRefGoogle Scholar
  21. 21.
    Armitage, I.M. and Otvos, J.D. (1982) In ‘Biological Magnetic Resonance’ (Berliner, L.J. and Reuben, J. Eds.), Plenum Press, New York, Vol. 4, pp 79–144.CrossRefGoogle Scholar
  22. 22.
    Furey, W.F., Robbins, A.H., Clancy, L.L., Winge, D.R., Wang, B.C. and Stout, C.D., manuscript in preparation.Google Scholar

Copyright information

© Springer Basel AG 1987

Authors and Affiliations

  • Gerhard Wagner
    • 1
    • 2
  • M. H. Frey
    • 1
    • 2
  • D. Neuhaus
    • 1
    • 2
  • E. Wörgötter
    • 1
    • 2
  • W. Braun
    • 1
    • 2
  • M. Vasak
    • 1
    • 2
  • J. H. R. Kägi
    • 1
    • 2
  • K. Wüthrich
    • 1
    • 2
  1. 1.Institut für Molekularbiologie und BiophysikEidgenössische Technische Hochschule HönggerbergZürichSwitzerland
  2. 2.Biochemisches InstitutUniversität ZürichZürichSwitzerland

Personalised recommendations