Advertisement

Abstract

One of the convenient properties of the Gaussian formulae is, that among all quadrature formulae of a fixed degree the Gaussian formula has the minimal number of nodes. For its multidimensional analogue, we need at least the knowledge of lower bounds for the number of nodes and informations on the strictness of the estimates.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fritsch, F. N.: On the number of nodes in self-contained integration formulae of degree 2 for compact planar regions. Numer. Math. 16, 224–230 (1970)CrossRefGoogle Scholar
  2. 2.
    Gegel’, G. N.: Konstruktion von Kubaturformeln, die für Polynome des Grads 2m exakt sind (russ.) . Vopr. vyčisl. i prikl. mat., Taschkent, 32, 5–9 (1975).Google Scholar
  3. 3.
    Möller, H. M.: Polynomideale und Kubaturformeln, Dissertation, Dortmund (1973)Google Scholar
  4. 4.
    Möller, H. M.: Kubaturformeln mit minimaler Knotenzahl. Numer. Math. 25, 185–200 (1976)CrossRefGoogle Scholar
  5. 5.
    Morrow, C. R., Patterson, T. N. L.: Construction of algebraic cu-bature rules using polynomial ideal theory. SIAM J. Num. Anal. 15, 953–976 (1978)CrossRefGoogle Scholar
  6. 6.
    Mysovskih, I. P.: Proof of the minimality of the number of nodes in the cubature formula for a hypersphere. USSR Comp. Math. 6, Nr. 4, 15–27 (1966)CrossRefGoogle Scholar
  7. 7.
    Mysovskih, I. P.: Radons paper on the cubature formula. USSR Comp. Math. 7, Nr. 4, 232–236 (1967)CrossRefGoogle Scholar
  8. 8.
    Mysovskih, I. P.: On the construction of cubature formulas with fewest nodes. Sov. Math. Dokl. 9, Nr. 1, 277–280 (1968)Google Scholar
  9. 9.
    Mysovskih, I. P.: über Kubaturformeln mit kleinstmöglicher Knotenzahl (russ.). 2. Konf. d. weißruss. Math., Minsk, 42–48 (1969)Google Scholar
  10. 10.
    Mysovskih, I. P.: Numerical characteristics of orthogonal polynomials in two variables. Vestnik Leningr. Univ. Math. 3, 323–332 (1976)Google Scholar
  11. 11.
    Mysovskih, I. P.: Zur Konstruktion von Kubaturformeln (russ.). Vopr. vyčisl. i prikl. mat., Taschkent, 32, 85–98 (1975)Google Scholar
  12. 12.
    Mysovskih, I. P.: On the evaluation of integrals over the surface of a sphere, Sov. Math. Dokl. 18, Nr. 4, 925–929 (1978)Google Scholar
  13. 13.
    Mysovskih, I. P., Öernicina, V. Ja.: The answer to a question of Radon. Sov. Math. Dokl. 12, Nr. 3, 852–854 (1971)Google Scholar
  14. 14.
    Radon, J.: Zur mechanischen Kubatur. Monatsh. Math. 52, 286–300 (1948)CrossRefGoogle Scholar
  15. 15.
    Schmid, H. J.: Gauß Kubaturformeln der Ordnung 2k-1. This conference.Google Scholar
  16. 16.
    Stroud, A. H.: Quadrature methods for functions of more than one variable, Ann. New York Acad. Sci. 86, Nr. 3, 776–791 (1960)CrossRefGoogle Scholar
  17. 17.
    Stroud, A.H.: Approximate calculation of multiple integrals. Prentice Hall 1971Google Scholar

Copyright information

© Springer Basel AG 1979

Authors and Affiliations

  • H. M. Möller

There are no affiliations available

Personalised recommendations