Schottky’s Invariant and Quadratic Forms

  • Jun-ichi Igusa


In his classical paper on the moduli of 4 dimensional principally polarized abelian varieties Schottky introduced a homogeneous polynomial J of degree 16 in the Thetanullwerte which vanishes at every jacobian point. On the other hand, the analytic class invariants of even quadratic forms in 16 variables with determinant 1 can be written as f 4 2 and f 8, and they are Siegel modular forms of weight 8 and of an arbitrary degree g. In this paper explicit expressions of J by f 4 2 , f 8 and also by f 4 2 , the Eisenstein series E 8 for g=4 are proved. Also an outline of the proof of the fact that f 4 is the only Siegel modular form of weight 4 and of any given degree g which can be expressed as a polynomial in the Thetanullwerte is given.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Igusa, J.: Geometric and analytic methods in the theory of theta functions. Proc. Bombay Colloq. on Algebraic Geometry (1968), 241–253.Google Scholar
  2. [2]
    Igusa, J.: Theta Functions. Grund. math. Wiss. 194, Springer-Verlag, 1972.Google Scholar
  3. [3]
    Krazer, A.: Lehrbuch der Thetafunktionen. B.G. Teubner, Leipzig, 1903.Google Scholar
  4. [4]
    Schottky, F.: Zur Theorie der Abelschen Functionen von vier Variabeln, Crelles J. 102 (1888), 304–352.Google Scholar
  5. [5]
    Siegel, C.L.: Über die analytische Theorie der quadratischen Formen, Ann. of Math. 36 (1935), 527–606; Gesam Abhand., Springer-Verlag, 1966, Bd. I, 326–405.Google Scholar
  6. [6]
    Witt, E.: Eine Identität zwischen Modulformen zweiten Grades, Abh. Math. Seminar Hamburg 14 (1941), 323–337.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1981

Authors and Affiliations

  • Jun-ichi Igusa
    • 1
  1. 1.Department of MathematicsThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations