Advertisement

The Role of Inflammation in Prostate Cancer

  • Karen S. Sfanos
  • Heidi A. Hempel
  • Angelo M. De MarzoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 816)

Abstract

In the United States and in “Westernized” countries, the prevalence of both prostate cancer and prostate inflammation is very high, indicating that the two pathologies could be causally related. Indeed, chronic inflammation is now regarded as an “enabling” characteristic of human cancer. Prostate cancer incidence is thought to be mediated in part by genetics, but also by environmental exposures, including the same exposures that may contribute to the development of prostatic inflammation. As our understanding of the role of inflammation in cancer deepens, it is increasingly apparent that “inflammation” as a whole is a complex entity that does not always play a negative role in cancer etiology. In fact, inflammation can play potentially dichotomous (both pro and antitumorigenic) roles depending on the nature and the cellular makeup of the immune response. This chapter will focus on reviewing the current state of knowledge on the role of innate and adaptive immune cells within the prostate tumor microenvironment and their seemingly complex role in prostate cancer in preventing versus promoting initiation and progression of the disease.

Keywords

Prostate Cancer Mast Cell Prostate Tumor Prostate Cancer Risk African American 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aaltomaa S, Lipponen P, Papinaho S, Kosma V (1993) Mast cells in breast cancer. Anticancer Res 13(3):785–788PubMedGoogle Scholar
  2. Allavena P, Sica A, Garlanda C, Mantovani A (2008) The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev 222(1):155–161. doi: 10.1111/j.1600-065X.2008.00607.x PubMedGoogle Scholar
  3. Ammirante M, Luo J-L, Grivennikov S, Nedospasov S, Karin M (2010) B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464:302–305. doi: 10.1038/nature08782 PubMedCentralPubMedGoogle Scholar
  4. Andreani V, Gatti G, Simonella L, Rivero V, Maccioni M (2007) Activation of toll-like receptor 4 on tumor cells in vitro inhibits subsequent tumor growth in vivo. Cancer Res 67(21):10519–10527. doi: 10.1158/0008-5472.can-07-0079 PubMedGoogle Scholar
  5. Arock M, Ross E, Lai-Kuen R, Averlant G, Gao Z, Abraham SN (1998) Phagocytic and tumor necrosis factor alpha response of human mast cells following exposure to gram-negative and gram-positive bacteria. Infect Immun 66(12):6030–6034PubMedCentralPubMedGoogle Scholar
  6. Barach YS, Lee JS, Zang X (2011) T cell coinhibition in prostate cancer: new immune evasion pathways and emerging therapeutics. Trends Mol Med 17(1):47–55. doi:http://dx.doi.org/10.1016/j.molmed.2010.09.006
  7. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439(7077):682–687. doi:http://www.nature.com/nature/journal/v439/n7077/suppinfo/nature04444_S1.html
  8. Bauskin AR, Brown DA, Junankar S, Rasiah KK, Eggleton S, Hunter M, Liu T, Smith D, Kuffner T, Pankhurst GJ, Johnen H, Russell PJ, Barret W, Stricker PD, Grygiel JJ, Kench JG, Henshall SM, Sutherland RL, Breit SN (2005) The propeptide mediates formation of stromal stores of PROMIC-1: role in determining prostate cancer outcome. Cancer Res 65(6):2330–2336. doi: 10.1158/0008-5472.can-04-3827 PubMedGoogle Scholar
  9. Berger P, Perng D-W, Thabrew H, Compton SJ, Cairns JA, McEuen AR, Marthan R, Tunon De Lara J-M, Walls AF (2001) Tryptase and agonists of PAR-2 induce the proliferation of human airway smooth muscle cells. J Appl Physiol 91(3):1372–1379Google Scholar
  10. Bethel CR, Faith D, Li X, Guan B, Hicks JL, Lan F, Jenkins RB, Bieberich CJ, De Marzo AM (2006) Decreased NKX3.1 protein expression in focal prostatic atrophy, prostatic intraepithelial neoplasia, and adenocarcinoma: association with Gleason score and chromosome 8p deletion. Cancer Res 66(22):10683–10690. doi: 10.1158/0008-5472.can-06-0963 PubMedGoogle Scholar
  11. Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17(3):320–329. doi:http://www.nature.com/nm/journal/v17/n3/abs/nm.2328.html#supplementary-information
  12. Bootcov MR, Bauskin AR, Valenzuela SM, Moore AG, Bansal M, He XY, Zhang HP, Donnellan M, Mahler S, Pryor K, Walsh BJ, Nicholson RC, Fairlie WD, Por SB, Robbins JM, Breit SN (1997) MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-β superfamily. Proc Natl Acad Sci 94(21):11514–11519PubMedCentralPubMedGoogle Scholar
  13. Breit SN, Johnen H, Cook AD, Tsai VWW, Mohammad MG, Kuffner T, Zhang HP, Marquis CP, Jiang L, Lockwood G, Lee-Ng M, Husaini Y, Wu L, Hamilton JA, Brown DA (2011) The TGF-β superfamily cytokine, MIC-1/GDF15: a pleotrophic cytokine with roles in inflammation, cancer and metabolism. Growth Factors 29(5):187–195. doi: 10.3109/08977194.2011.607137 PubMedGoogle Scholar
  14. Brown DA, Stephan C, Ward RL, Law M, Hunter M, Bauskin AR, Amin J, Jung K, Diamandis EP, Hampton GM, Russell PJ, Giles GG, Breit SN (2006) Measurement of serum levels of macrophage inhibitory cytokine 1 combined with prostate-specific antigen improves prostate cancer diagnosis. Clin Cancer Res 12(1):89–96. doi: 10.1158/1078-0432.ccr-05-1331 PubMedGoogle Scholar
  15. Brown DA, Lindmark F, Stattin P, Bälter K, Adami H-O, Zheng SL, Xu J, Isaacs WB, Grönberg H, Breit SN, Wiklund FE (2009) Macrophage inhibitory cytokine 1: a new prognostic marker in prostate cancer. Clin Cancer Res 15(21):6658–6664. doi: 10.1158/1078-0432.ccr-08-3126 PubMedCentralPubMedGoogle Scholar
  16. Cairns JA, Walls AF (1996) Mast cell tryptase is a mitogen for epithelial cells. Stimulation of IL-8 production and intercellular adhesion molecule-1 expression. J Immunol 156(1):275–283PubMedGoogle Scholar
  17. Chan JK, Magistris A, Loizzi V, Lin F, Rutgers J, Osann K, DiSaia PJ, Samoszuk M (2005) Mast cell density, angiogenesis, blood clotting, and prognosis in women with advanced ovarian cancer. Gynecol Oncol 99(1):20–25. doi:http://dx.doi.org/10.1016/j.ygyno.2005.05.042
  18. Chen L (2004) Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 4(5):336–347PubMedGoogle Scholar
  19. Chen Y-C, Giovannucci E, Lazarus R, Kraft P, Ketkar S, Hunter DJ (2005) Sequence variants of toll-like receptor 4 and susceptibility to prostate cancer. Cancer Res 65(24):11771–11778. doi: 10.1158/0008-5472.can-05-2078 PubMedGoogle Scholar
  20. Chen Y-C, Giovannucci E, Kraft P, Lazarus R, Hunter DJ (2007) Association between toll-like receptor gene cluster (TLR6, TLR1, and TLR10) and prostate cancer. Cancer Epidemiol Biomark Prev 16(10):1982–1989. doi: 10.1158/1055-9965.epi-07-0325 Google Scholar
  21. Cheng L, Wang J, Li X, Xing Q, Du P, Su L, Wang S (2011) Interleukin-6 induces Gr-1+CD11b+ myeloid cells to suppress CD8+ T cell-mediated liver injury in mice. PLoS ONE 6(3):e17631. doi: 10.1371/journal.pone.0017631 PubMedCentralPubMedGoogle Scholar
  22. Cheon EC, Khazaie K, Khan MW, Strouch MJ, Krantz SB, Phillips J, Blatner NR, Hix LM, Zhang M, Dennis KL, Salabat MR, Heiferman M, Grippo PJ, Munshi HG, Gounaris E, Bentrem DJ (2011) Mast cell 5-lipoxygenase activity promotes intestinal polyposis in APCΔ468 mice. Cancer Res 71(5):1627–1636. doi: 10.1158/0008-5472.can-10-1923 PubMedGoogle Scholar
  23. Cheung PK, Woolcock B, Adomat H, Sutcliffe M, Bainbridge TC, Jones EC, Webber D, Kinahan T, Sadar M, Gleave ME, Vielkind J (2004) Protein profiling of microdissected prostate tissue links growth differentiation factor 15 to prostate carcinogenesis. Cancer Res 64(17):5929–5933. doi: 10.1158/0008-5472.can-04-1216 PubMedGoogle Scholar
  24. Chin AI, Miyahira AK, Covarrubias A, Teague J, Guo B, Dempsey PW, Cheng G (2010) Toll-like receptor 3–mediated suppression of TRAMP prostate cancer shows the critical role of type I interferons in tumor immune surveillance. Cancer Res 70(7):2595–2603. doi: 10.1158/0008-5472.can-09-1162 PubMedCentralPubMedGoogle Scholar
  25. Chun JY, Nadiminty N, Dutt S, Lou W, Yang JC, Kung H-J, Evans CP, Gao AC (2009) Interleukin-6 regulates androgen synthesis in prostate cancer cells. Clin Cancer Res 15(15):4815–4822. doi: 10.1158/1078-0432.ccr-09-0640 PubMedCentralPubMedGoogle Scholar
  26. Clemente CG, Mihm MC, Bufalino R, Zurrida S, Collini P, Cascinelli N (1996) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77(7):1303–1310. doi: 10.1002/(sici)1097-0142(19960401)77:7<1303:aid-cncr12>3.3.co;2-0 PubMedGoogle Scholar
  27. Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z, Caughey GH, Hanahan D (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13(11):1382–1397PubMedCentralPubMedGoogle Scholar
  28. Crivellato E, Nico B, Mallardi F, Beltrami CA, Ribatti D (2003) Piecemeal degranulation as a general secretory mechanism? Anat Rec Part A Discov Mol Cell Evol Biol 274A(1):778–784. doi: 10.1002/ar.a.10095 Google Scholar
  29. Dabiri S, Huntsman D, Makretsov N, Cheang M, Gilks B, Bajdik C, Gelmon K, Chia S, Hayes M (2004) The presence of stromal mast cells identifies a subset of invasive breast cancers with a favorable prognosis. Mod Pathol 17(8):1025Google Scholar
  30. De Marzo AM (2007) The pathology of human prostatic atrophy and inflammation. In: Chung LK, Isaacs W, Simons J (eds) Prostate cancer. Contemporary Cancer Research. Humana Press, pp 33–48. doi: 10.1007/978-1-59745-224-3_2
  31. De Marzo AM, Marchi VL, Epstein JI, Nelson WG (1999) Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol 155(6):1985–1992. doi:http://dx.doi.org/10.1016/S0002-9440(10)65517-4
  32. De Marzo AM, Platz EA, Sutcliffe S, Xu J, Gronberg H, Drake CG, Nakai Y, Isaacs WB, Nelson WG (2007) Inflammation in prostate carcinogenesis. Nat Rev Cancer 7(4):256–269PubMedCentralPubMedGoogle Scholar
  33. Delongchamps NB, de la Roza G, Chandan V, Jones R, Sunheimer R, Threatte G, Jumbelic M, Haas GP (2008) Evaluation of prostatitis in autopsied prostates—is chronic inflammation more associated with benign prostatic hyperplasia or cancer? J Urol 179(5):1736–1740. doi:http://dx.doi.org/10.1016/j.juro.2008.01.034
  34. Disis ML (2010) Immune regulation of cancer. J Clin Oncol 28(29):4531–4538. doi: 10.1200/jco.2009.27.2146 PubMedCentralPubMedGoogle Scholar
  35. Dotti G (2009) Blocking PD-1 in cancer immunotherapy. Blood 114(8):1457–1458. doi: 10.1182/blood-2009-05-223412 PubMedGoogle Scholar
  36. Dulos J, Carven GJ, van Boxtel SJ, Evers S, Driessen-Engels LJA, Hobo W, Gorecka MA, de Haan AFJ, Mulders P, Punt CJA, Jacobs JFM, Schalken JA, Oosterwijk E, van Eenennaam H, Boots AM (2012) PD-1 blockade augments Th1 and Th17 and suppresses Th2 responses in peripheral blood from patients with prostate and advanced melanoma cancer. J Immunother 35(2):169–178 110.1097/CJI.1090b1013e318247a318244e318247Google Scholar
  37. Ebelt K, Babaryka G, Frankenberger B, Stief CG, Eisenmenger W, Kirchner T, Schendel DJ, Noessner E (2009) Prostate cancer lesions are surrounded by FOXP3+, PD-1+ and B7-H1+ lymphocyte clusters. Eur J Cancer 45(9):1664–1672. doi:http://dx.doi.org/10.1016/j.ejca.2009.02.015
  38. Edin S, Wikberg ML, Dahlin AM, Rutegård J, Öberg Å, Oldenborg P-A, Palmqvist R (2012) The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS ONE 7(10):e47045. doi: 10.1371/journal.pone.0047045 PubMedCentralPubMedGoogle Scholar
  39. Ellem SJ, Wang H, Poutanen M, Risbridger GP (2009) Increased endogenous estrogen synthesis leads to the sequential induction of prostatic inflammation (prostatitis) and prostatic pre-malignancy. Am J Pathol 175(3):1187–1199. doi:http://dx.doi.org/10.2353/ajpath.2009.081107
  40. Fisher E, Sass R, Watkins G, Johal J, Fisher B (1985) Tissue mast cells in breast cancer. Breast Cancer Res Treat 5(3):285–291. doi: 10.1007/bf01806023 PubMedGoogle Scholar
  41. Fisher ER, Paik SM, Rockette H, Jones J, Caplan R, Fisher B (1989) Prognostic significance of eosinophils and mast cells in rectal cancer: findings from the National Surgical Adjuvant Breast and Bowel Project (protocol R-01). Human Pathol 20(2):159–163. doi:http://dx.doi.org/10.1016/0046-8177(89)90180-9
  42. Flammiger A, Bayer F, Cirugeda-Kühnert A, Huland H, Tennstedt P, Simon R, Minner S, Bokemeyer C, Sauter G, Schlomm T, Trepel M (2012) Intratumoral T but not B lymphocytes are related to clinical outcome in prostate cancer. APMIS 120(11):901–908. doi: 10.1111/j.1600-0463.2012.02924.x PubMedGoogle Scholar
  43. Fleischmann A, Schlomm T, Köllermann J, Sekulic N, Huland H, Mirlacher M, Sauter G, Simon R, Erbersdobler A (2009) Immunological microenvironment in prostate cancer: high mast cell densities are associated with favorable tumor characteristics and good prognosis. Prostate 69(9):976–981. doi: 10.1002/pros.20948 PubMedGoogle Scholar
  44. Forssell J, Öberg Å, Henriksson ML, Stenling R, Jung A, Palmqvist R (2007) High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res 13(5):1472–1479. doi: 10.1158/1078-0432.ccr-06-2073 PubMedGoogle Scholar
  45. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034. doi: 10.1084/jem.192.7.1027 PubMedCentralPubMedGoogle Scholar
  46. Frungieri MB, Weidinger S, Meineke V, Köhn FM, Mayerhofer A (2002) Proliferative action of mast-cell tryptase is mediated by PAR2, COX2, prostaglandins, and PPARγ: possible relevance to human fibrotic disorders. Proc Natl Acad Sci 99(23):15072–15077. doi: 10.1073/pnas.232422999 PubMedCentralPubMedGoogle Scholar
  47. Fujita K, Hosomi M, Tanigawa G, Okumi M, Fushimi H, Yamaguchi S (2011) Prostatic inflammation detected in initial biopsy specimens and urinary pyuria are predictors of negative repeat prostate biopsy. J Urol 185(5):1722–1727. doi:http://dx.doi.org/10.1016/j.juro.2010.12.058
  48. Galinsky DST, Nechushtan H (2008) Mast cells and cancer—no longer just basic science. Crit Rev Oncol/Hematol 68(2):115–130. doi:http://dx.doi.org/10.1016/j.critrevonc.2008.06.001
  49. Galli SJ (2000) Mast cells and basophils. Curr Opin Hematol 7(1):32–39PubMedGoogle Scholar
  50. Galli R, Starace D, Busà R, Angelini DF, Paone A, De Cesaris P, Filippini A, Sette C, Battistini L, Ziparo E, Riccioli A (2010) TLR stimulation of prostate tumor cells induces chemokine-mediated recruitment of specific immune cell types. J Immunol 184(12):6658–6669. doi: 10.4049/jimmunol.0902401 PubMedGoogle Scholar
  51. Gocheva V, Wang H-W, Gadea BB, Shree T, Hunter KE, Garfall AL, Berman T, Joyce JA (2010) IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 24(3):241–255. doi: 10.1101/gad.1874010 PubMedCentralPubMedGoogle Scholar
  52. Gonzalez-Reyes S, Fernandez J, Gonzalez L, Aguirre A, Suarez A, Gonzalez J, Escaff S, Vizoso F (2011) Study of TLR3, TLR4, and TLR9 in prostate carcinomas and their association with biochemical recurrence. Cancer Immunol Immunother 60(2):217–226PubMedGoogle Scholar
  53. Gooch JL, Lee AV, Yee D (1998) Interleukin 4 inhibits growth and induces apoptosis in human breast cancer cells. Cancer Res 58(18):4199–4205PubMedGoogle Scholar
  54. Gordon JR, Galli SJ (1990) Mast cells as a source of both preformed and immunologically inducible TNF-[alpha]/cachectin. Nature 346(6281):274–276PubMedGoogle Scholar
  55. Gordon J, Burd P, Galli S (1990) Mast cells as a source of multifunctional cytokines. Immunol Today 11(12):458–464PubMedGoogle Scholar
  56. Gounaris E, Erdman SE, Restaino C, Gurish MF, Friend DS, Gounari F, Lee DM, Zhang G, Glickman JN, Shin K, Rao VP, Poutahidis T, Weissleder R, McNagny KM, Khazaie K (2007) Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci 104(50):19977–19982. doi: 10.1073/pnas.0704620104 PubMedCentralPubMedGoogle Scholar
  57. Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu G-Y, Osterreicher CH, Hung KE, Datz C, Feng Y, Fearon ER, Oukka M, Tessarollo L, Coppola V, Yarovinsky F, Cheroutre H, Eckmann L, Trinchieri G, Karin M (2012) Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491(7423):254–258. doi:http://www.nature.com/nature/journal/v491/n7423/abs/nature11465.html#supplementary-information
  58. Gruber BL, Kew RR, Jelaska A, Marchese MJ, Garlick J, Ren S, Schwartz LB, Korn JH (1997) Human mast cells activate fibroblasts: tryptase is a fibrogenic factor stimulating collagen messenger ribonucleic acid synthesis and fibroblast chemotaxis. J Immunol 158(5):2310–2317PubMedGoogle Scholar
  59. Gui-zhong LI, Libo M, Guanglin H, Jianwei W (2011) The correlation of extent and grade of inflammation with serum PSA levels in patients with IV prostatitis. Int Urol Nephrol 43(2):295–301. doi: 10.1007/s11255-010-9825-5 PubMedGoogle Scholar
  60. Gurish MF, Pear WS, Stevens RL, Scott ML, Sokol K, Ghildyal N, Webster MJ, Hu X, Austen KF, Baltimore D, Friend DS (1995) Tissue-regulated differentiation and maturation of a v-abl-immortalized mast cell-committed progenitor. Immunity 3(2):175–186PubMedGoogle Scholar
  61. Hagemann T, Balkwill F, Lawrence T (2007) Inflammation and cancer: a double-edged sword. Cancer Cell 12(4):300–301. doi:http://dx.doi.org/10.1016/j.ccr.2007.10.005
  62. Hanahan D, Weinberg Robert A (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:http://dx.doi.org/10.1016/j.cell.2011.02.013
  63. Hao N-B, Lü M-H, Fan Y-H, Cao Y-L, Zhang Z-R, Yang S-M (2012) Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012:11. doi: 10.1155/2012/948098 Google Scholar
  64. Harashima N, Inao T, Imamura R, Okano S, Suda T, Harada M (2012) Roles of the PI3K/Akt pathway and autophagy in TLR3 signaling-induced apoptosis and growth arrest of human prostate cancer cells. Cancer Immunol Immunother 61(5):667–676. doi: 10.1007/s00262-011-1132-1 PubMedGoogle Scholar
  65. Herroon MK, Rajagurubandara E, Rudy DL, Chalasani A, Hardaway AL, Podgorski I (2013) Macrophage cathepsin K promotes prostate tumor progression in bone. Oncogene 32(12):1580–1593. doi:http://www.nature.com/onc/journal/v32/n12/suppinfo/onc2012166s1.html
  66. Hobisch A, Rogatsch H, Hittmair A, Fuchs D, Bartsch G, Klocker H, Culig Z (2000) Immunohistochemical localization of interleukin-6 and its receptor in benign, premalignant and malignant prostate tissue. J Pathol 191(3):239–244. doi: 10.1002/1096-9896(2000)9999:9999<:aid-path633>3.0.co;2-x PubMedGoogle Scholar
  67. Hood BL, Darfler MM, Guiel TG, Furusato B, Lucas DA, Ringeisen BR, Sesterhenn IA, Conrads TP, Veenstra TD, Krizman DB (2005) Proteomic analysis of formalin-fixed prostate cancer tissue. Mol Cell Proteomics 4(11):1741–1753. doi: 10.1074/mcp.M500102-MCP200 PubMedGoogle Scholar
  68. Horner M, Ries L, Krapcho M, Neyman N, Aminou R, Howlader N, Altekruse SF, Feuer EJ, Huang L, Mariotto A, Miller BA, Lewis DR, Eisner MP, Stinchcomb DG, E BK (2009) SEER Cancer Statistics Review, 1975–2006. National Cancer Institute, Bethesda, MDGoogle Scholar
  69. Iamaroon A, Pongsiriwet S, Jittidecharaks S, Pattanaporn K, Prapayasatok S, Wanachantararak S (2003) Increase of mast cells and tumor angiogenesis in oral squamous cell carcinoma. J Oral Pathol Med 32(4):195–199. doi: 10.1034/j.1600-0714.2003.00128.x PubMedGoogle Scholar
  70. Iliopoulos D, Hirsch HA, Wang G, Struhl K (2011) Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci 108(4):1397–1402. doi: 10.1073/pnas.1018898108 PubMedCentralPubMedGoogle Scholar
  71. Irani AA, Schechter NM, Craig SS, DeBlois G, Schwartz LB (1986) Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci 83(12):4464–4468PubMedCentralPubMedGoogle Scholar
  72. Irani J, Goujon J-M, Ragni E, Peyrat L, Hubert J, Saint F, Mottet N (1999) High-grade inflammation in prostate cancer as a prognostic factor for biochemical recurrence after radical prostatectomy. Urology 54(3):467–472. doi:http://dx.doi.org/10.1016/S0090-4295(99)00152-1
  73. Johansson A, Rudolfsson S, Hammarsten P, Halin S, Pietras K, Jones J, Stattin P, Egevad L, Granfors T, Wikström P, Bergh A (2010) Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. Am J Pathol 177(2):1031–1041. doi:http://dx.doi.org/10.2353/ajpath.2010.100070
  74. Kaler P, Godasi B, Augenlicht L, Klampfer L (2009) The NF-kappaB/AKT-dependent Induction of Wnt signaling in colon cancer cells by macrophages and IL-1beta. Cancer MicroenvironGoogle Scholar
  75. Kang J-C, Chen J-S, Lee C-H, Chang J-J, Shieh Y-S (2010) Intratumoral macrophage counts correlate with tumor progression in colorectal cancer. J Surg Oncol 102(3):242–248. doi: 10.1002/jso.21617 PubMedGoogle Scholar
  76. Karan D, Holzbeierlein J, Thrasher JB (2009) Macrophage inhibitory cytokine-1: possible bridge molecule of inflammation and prostate cancer. Cancer Res 69(1):2–5. doi: 10.1158/0008-5472.can-08-1230 PubMedGoogle Scholar
  77. Karja V, Aaltomaa S, Lipponen P, Isotalo T, Talja M, Mokka R (2005) Tumour-infiltrating lymphocytes: a prognostic factor of PSA-free survival in patients with local prostate carcinoma treated by radical prostatectomy. Anticancer Res 25(6C):4435–4438PubMedGoogle Scholar
  78. Kazma R, Mefford JA, Cheng I, Plummer SJ, Levin AM, Rybicki BA, Casey G, Witte JS (2012) Association of the innate immunity and inflammation pathway with advanced prostate cancer risk. PLoS ONE 7(12):e51680. doi: 10.1371/journal.pone.0051680 PubMedCentralPubMedGoogle Scholar
  79. Kennedy R, Celis E (2008) Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev 222(1):129–144. doi: 10.1111/j.1600-065X.2008.00616.x PubMedGoogle Scholar
  80. Khazaie K, Blatner N, Khan M, Gounari F, Gounaris E, Dennis K, Bonertz A, Tsai F, Strouch M, Cheon E, Phillips J, Beckhove P, Bentrem D (2011) The significant role of mast cells in cancer. Cancer Metastasis Rev 30(1):45–60PubMedGoogle Scholar
  81. Kim H, Bae J, Chang I, Kim K, Lee J, Shin H, Lee J, Kim W-J, Kim W, Myung S (2012) Sequence variants of toll-like receptor 4 (TLR4) and the risk of prostate cancer in Korean men. World J Urol 30(2):225–232. doi: 10.1007/s00345-011-0690-3 PubMedGoogle Scholar
  82. Kimura A, Kishimoto T (2010) IL-6: regulator of Treg/Th17 balance. Eur J Immunol 40(7):1830–1835. doi: 10.1002/eji.201040391 PubMedGoogle Scholar
  83. Kiniwa Y, Miyahara Y, Wang HY, Peng W, Peng G, Wheeler TM, Thompson TC, Old LJ, Wang R-F (2007) CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin Cancer Res 13(23):6947–6958. doi: 10.1158/1078-0432.ccr-07-0842 PubMedGoogle Scholar
  84. Krieger J, Nyberg L, Nickel J (1999) NIH consensus definition and classification of prostatitis. JAMA 282(3):236–237. doi:10-1001/pubs.JAMA-ISSN-0098-7484-282-3-jac90006PubMedGoogle Scholar
  85. Krishnaswamy G, Kelley J, Johnson D, Youngberg G, Stone W, Huang S, Bieber J, Chi D (2001) The human mast cell: functions in physiology and disease. Front Biosci 6:D1109–D1127PubMedGoogle Scholar
  86. LaBarge MA, Nelson CM, Villadsen R, Fridriksdottir A, Ruth JR, Stampfer MR, Petersen OW, Bissell MJ (2009) Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integr Biol 1(1):70–79Google Scholar
  87. Lacy P, Stow JL (2011) Cytokine release from innate immune cells: association with diverse membrane trafficking pathways. Blood 118(1):9–18. doi: 10.1182/blood-2010-08-265892 PubMedGoogle Scholar
  88. Leavy O (2010) Regulatory T cells: CD8+ TReg cells join the fold. Nat Rev Immunol 10(10):680–681PubMedGoogle Scholar
  89. Lee Y-M, Jippo T, Kim D-K, Katsu Y, Tsujino K, Morii E, Kim H-M, Adachi S, Nawa Y, Kitamura Y (1998) Alteration of protease expression phenotype of mouse peritoneal mast cells by changing the microenvironment as demonstrated by in situ hybridization histochemistry. Am J Pathol 153(3):931–936. doi:http://dx.doi.org/10.1016/S0002-9440(10)65634-9
  90. Lee SO, Lou W, Hou M, de Miguel F, Gerber L, Gao AC (2003) Interleukin-6 promotes androgen-independent growth in LNCaP human prostate cancer cells. Clin Cancer Res 9(1):370–376PubMedGoogle Scholar
  91. Levi-Schaffer F, Piliponsky AM (2003) Tryptase, a novel link between allergic inflammation and fibrosis. Trends Immunol 24(4):158–161. doi:http://dx.doi.org/10.1016/S1471-4906(03)00058-9
  92. Li Y-W, Qiu S-J, Fan J, Gao Q, Zhou J, Xiao Y-S, Xu Y, Wang X-Y, Sun J, Huang X-W (2009a) Tumor-infiltrating macrophages can predict favorable prognosis in hepatocellular carcinoma after resection. J Cancer Res Clin Oncol 135(3):439–449. doi: 10.1007/s00432-008-0469-0 PubMedGoogle Scholar
  93. Li Y-Y, Hsieh L-L, Tang R-P, Liao S-K, Yeh K-Y (2009b) Interleukin-6 (IL-6) released by macrophages induces IL-6 secretion in the human colon cancer HT-29 cell line. Hum Immunol 70(3):151–158. doi:http://dx.doi.org/10.1016/j.humimm.2009.01.004
  94. Lindahl C, Simonsson M, Bergh A, Thysell E, Antti H, Sund M, Wikstrom P (2009) Increased levels of macrophage-secreted cathepsin S during prostate cancer progression in TRAMP mice and patients. Cancer Genomics Proteomics 6(3):149–159PubMedGoogle Scholar
  95. Lissbrant I, Stattin P, Wikstrom P, Damber J, Egevad L, Bergh A (2000) Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int J Oncol 17(3):445–451PubMedGoogle Scholar
  96. Liu T, Bauskin AR, Zaunders J, Brown DA, Pankurst S, Russell PJ, Breit SN (2003) Macrophage inhibitory cytokine 1 reduces cell adhesion and induces apoptosis in prostate cancer cells. Cancer Res 63(16):5034–5040PubMedGoogle Scholar
  97. Liu S, Lachapelle J, Leung S, Gao D, Foulkes W, Nielsen T (2012) CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer. Breast Cancer Res 14(2):R48PubMedCentralPubMedGoogle Scholar
  98. Loberg RD, Day LL, Harwood J, Ying C, St John LN, Giles R, Neeley CK, Pienta KJ (2006) CCL2 (Monocyte chemoattractant protein-1) is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia 8(7):578–586PubMedCentralPubMedGoogle Scholar
  99. Lucia M, Lambert J, Platz EA, De Marzo AM (2010) Inflammation as a target in prostate cancer. In: Figg WD, Chau CH, Small EJ (eds) Drug management of prostate cancer. Springer, New York, NY, pp 375–386Google Scholar
  100. Malinowska K, Neuwirt H, Cavarretta IT, Bektic J, Steiner H, Dietrich H, Moser PL, Fuchs D, Hobisch A, Culig Z (2009) Interleukin-6 stimulation of growth of prostate cancer in vitro and in vivo through activation of the androgen receptor. Endocr Relat Cancer 16(1):155–169. doi: 10.1677/erc-08-0174 PubMedGoogle Scholar
  101. Maltby S, Khazaie K, McNagny KM (2009) Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochimica et Biophysica Acta (BBA) Rev Cancer 1796(1):19–26. doi:http://dx.doi.org/10.1016/j.bbcan.2009.02.001
  102. Martin F, Apetoh L, Ghiringhelli F (2012) Controversies on the role of Th17 in cancer: a TGF-β-dependent immunosuppressive activity? Trends Mol Med 18(12):742–749PubMedGoogle Scholar
  103. McArdle PA, Canna K, McMillan DC, McNicol AM, Campbell R, Underwood MA (2004) The relationship between T-lymphocyte subset infiltration and survival in patients with prostate cancer. Br J Cancer 91(3):541–543PubMedCentralPubMedGoogle Scholar
  104. Miller AM, Lundberg K, Özenci V, Banham AH, Hellström M, Egevad L, Pisa P (2006) CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol 177(10):7398–7405PubMedGoogle Scholar
  105. Mizutani K, Sud S, McGregor N, Martinovski G, Rice B, Craig M, Varsos Z, Roca H, Pienta K (2009) The chemokine CCL2 increases prostate tumor growth and bone metastasis through macrophage and osteoclast recruitment. Neoplasia 11(11):1235–1242PubMedCentralPubMedGoogle Scholar
  106. Molin D (2004) Bystander cells and prognosis in Hodgkin lymphoma. Review based on a doctoral thesis. Ups J Med Sci 109(3):179–228PubMedGoogle Scholar
  107. Molin D, Edström A, Glimelius I, Glimelius B, Nilsson G, Sundström C, Enblad G (2002) Mast cell infiltration correlates with poor prognosis in Hodgkin’s lymphoma. Br J Haematol 119(1):122–124. doi: 10.1046/j.1365-2141.2002.03768.x PubMedGoogle Scholar
  108. Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC (2010) Regulatory T cells in cancer. In: George FVW, George K (eds) Advances in cancer research, vol 107. Academic Press, pp 57–117. doi:http://dx.doi.org/10.1016/S0065-230X(10)07003-X
  109. Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H, Ohtani H (1998) CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58(16):3491–3494PubMedGoogle Scholar
  110. Nakamura T, Scorilas A, Stephan C, Yousef GM, Kristiansen G, Jung K, Diamandis EP (2003) Quantitative analysis of macrophage inhibitory cytokine-1 (MIC-1) gene expression in human prostatic tissues. Br J Cancer 88(7):1101–1104PubMedCentralPubMedGoogle Scholar
  111. Nakayama M, Bennett CJ, Hicks JL, Epstein JI, Platz EA, Nelson WG, De Marzo AM (2003) Hypermethylation of the human glutathione S-transferase-π gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am J Pathol 163(3):923–933. doi:http://dx.doi.org/10.1016/S0002-9440(10)63452-9
  112. Nakayama T, Yao L, Tosato G (2004) Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Investig 114(9):1317–1325. doi: 10.1172/jci22089 PubMedCentralPubMedGoogle Scholar
  113. Nelson WG, De Marzo AM, Isaacs WB (2003) Prostate cancer. N Engl J Med 349(4):366–381. doi: 10.1056/NEJMra021562 PubMedGoogle Scholar
  114. Nelson W, Sfanos K, DeMarzo A, Yegnasubramanian S (2013) Prostate inflammation and prostate cancer. In: Klein EA, Jones JS (eds) Management of prostate cancer, current clinical urology. Humana Press, New York, NY, pp 103–115Google Scholar
  115. Nickel JC, Downey J, Young I, Boag S (1999) Asymptomatic inflammation and/or infection in benign prostatic hyperplasia. BJU International 84(9):976–981. doi: 10.1046/j.1464-410x.1999.00352.x
  116. Nonomura N, Takayama H, Nishimura K, Oka D, Nakai Y, Shiba M, Tsujimura A, Nakayama M, Aozasa K, Okuyama A (2007) Decreased number of mast cells infiltrating into needle biopsy specimens leads to a better prognosis of prostate cancer. Br J Cancer 97(7):952–956PubMedCentralPubMedGoogle Scholar
  117. Nonomura N, Takayama H, Nakayama M, Nakai Y, Kawashima A, Mukai M, Nagahara A, Aozasa K, Tsujimura A (2011) Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer. BJU Int 107(12):1918–1922. doi: 10.1111/j.1464-410X.2010.09804.x PubMedGoogle Scholar
  118. Okamoto M, Lee C, Oyasu R (1997) Interleukin-6 as a paracrine and autocrine growth factor in human prostatic carcinoma cells in vitro. Cancer Res 57(1):141–146PubMedGoogle Scholar
  119. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182(8):4499–4506. doi: 10.4049/jimmunol.0802740 PubMedCentralPubMedGoogle Scholar
  120. Palapattu GS, Sutcliffe S, Bastian PJ, Platz EA, De Marzo AM, Isaacs WB, Nelson WG (2005) Prostate carcinogenesis and inflammation: emerging insights. Carcinogenesis 26(7):1170–1181. doi: 10.1093/carcin/bgh317 PubMedGoogle Scholar
  121. Paone A, Starace D, Galli R, Padula F, De Cesaris P, Filippini A, Ziparo E, Riccioli A (2008) Toll-like receptor 3 triggers apoptosis of human prostate cancer cells through a PKC-α-dependent mechanism. Carcinogenesis 29(7):1334–1342. doi: 10.1093/carcin/bgn149 PubMedGoogle Scholar
  122. Pardoll D (2002) T cells take aim at cancer. Proc Natl Acad Sci 99(25):15840–15842. doi: 10.1073/pnas.262669499 PubMedCentralPubMedGoogle Scholar
  123. Pittoni P, Colombo MP (2012) The dark side of mast cell-targeted therapy in prostate cancer. Cancer Res 72(4):831–835. doi: 10.1158/0008-5472.can-11-3110 PubMedGoogle Scholar
  124. Pittoni P, Tripodo C, Piconese S, Mauri G, Parenza M, Rigoni A, Sangaletti S, Colombo MP (2011) Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers. Cancer Res. doi: 10.1158/0008-5472.can-11-1637 PubMedGoogle Scholar
  125. Platz EA, De Marzo AM, Erlinger TP, Rifai N, Visvanathan K, Hoffman SC, Helzlsouer KJ (2004) No association between pre-diagnostic plasma C-reactive protein concentration and subsequent prostate cancer. Prostate 59(4):393–400. doi: 10.1002/pros.10368 PubMedGoogle Scholar
  126. Ports MO, Nagle RB, Pond GD, Cress AE (2009) Extracellular engagement of α6 integrin inhibited urokinase-type plasminogen activator-mediated cleavage and delayed human prostate bone metastasis. Cancer Res 69(12):5007–5014. doi: 10.1158/0008-5472.can-09-0354 PubMedCentralPubMedGoogle Scholar
  127. Powell IJ, Dyson G, Land S, Ruterbusch J, Bock CH, Lenk S, Herawi M, Everson RB, Giroux CN, Schwartz AG, Bollig-Fischer A (2013) Genes associated with prostate cancer are differentially expressed in African American and European American men. Cancer Epidemiol Biomark Prev. doi: 10.1158/1055-9965.epi-12-1238 Google Scholar
  128. Proctor MJ, Talwar D, Balmar SM, O’Reilly DSJ, Foulis AK, Horgan PG, Morrison DS, McMillan DC (2010) The relationship between the presence and site of cancer, an inflammation-based prognostic score and biochemical parameters. Initial results of the Glasgow inflammation outcome study. Br J Cancer 103(6):870–876PubMedCentralPubMedGoogle Scholar
  129. Punturieri A, Filippov S, Allen E, Caras I, Murray R, Reddy V, Weiss SJ (2000) Regulation of elastinolytic cysteine proteinase activity in normal and cathepsin K–deficient human macrophages. J Exp Med 192(6):789–800. doi: 10.1084/jem.192.6.789 PubMedCentralPubMedGoogle Scholar
  130. Putzi MJ, De Marzo AM (2000) Morphologic transitions between proliferative inflammatory atrophy and high-grade prostatic intraepithelial neoplasia. Urology 56(5):828–832. doi:http://dx.doi.org/10.1016/S0090-4295(00)00776-7
  131. Rajput A, Turbin D, Cheang M, Voduc D, Leung S, Gelmon K, Gilks CB, Huntsman D (2008) Stromal mast cells in invasive breast cancer are a marker of favourable prognosis: a study of 4,444 cases. Breast Cancer Res Treat 107(2):249–257. doi: 10.1007/s10549-007-9546-3 PubMedCentralPubMedGoogle Scholar
  132. Rakoff-Nahoum S, Medzhitov R (2009) Toll-like receptors and cancer. Nat Rev Cancer 9(1):57–63PubMedGoogle Scholar
  133. Rao UNM, Lee SJ, Luo W, Mihm MC, Kirkwood JM (2010) Presence of tumor-infiltrating lymphocytes and a dominant nodule within primary melanoma are prognostic factors for relapse-free survival of patients with thick (T4) primary melanoma: pathologic analysis of the E1690 and E1694 intergroup trials. Am J Clin Pathol 133(4):646–653. doi: 10.1309/ajcptxmefovywda6 PubMedCentralPubMedGoogle Scholar
  134. Rasiah KK, Kench JG, Gardiner-Garden M, Biankin AV, Golovsky D, Brenner PC, Kooner R, O’Neill GF, Turner JJ, Delprado W, Lee CS, Brown DA, Breit SN, Grygiel JJ, Horvath LG, Stricker PD, Sutherland RL, Henshall SM (2006) Aberrant neuropeptide Y and macrophage inhibitory cytokine-1 expression are early events in prostate cancer development and are associated with poor prognosis. Cancer Epidemiol Biomark Prev 15(4):711–716. doi: 10.1158/1055-9965.epi-05-0752 Google Scholar
  135. Reams RR, Agrawal D, Davis M, Yoder S, Odedina F, Kumar N, Higginbotham J, Akinremi T, Suther S, Soliman K (2009) Microarray comparison of prostate tumor gene expression in African-American and Caucasian American males: a pilot project study. Infect Agents Cancer 4(Suppl 1):S3PubMedCentralPubMedGoogle Scholar
  136. Ribatti D, Vacca A, Nico B, Quondamatteo F, Ria R, Minischetti M, Marzullo A, Herken R, Roncali L, Dammacco F (1999) Bone marrow angiogenesis and mast cell density increase simultaneously with progression of human multiple myeloma. Br J Cancer 79(3–4):451–455PubMedCentralPubMedGoogle Scholar
  137. Ribatti D, Vacca A, Ria R, Marzullo A, Nico B, Filotico R, Roncali L, Dammacco F (2003) Neovascularisation, expression of fibroblast growth factor-2, and mast cells with tryptase activity increase simultaneously with pathological progression in human malignant melanoma. Eur J Cancer 39(5):666–674. doi:http://dx.doi.org/10.1016/S0959-8049(02)00150-8
  138. Ribatti D, Finato N, Crivellato E, Marzullo A, Mangieri D, Nico B, Vacca A, Beltrami CA (2005) Neovascularization and mast cells with tryptase activity increase simultaneously with pathologic progression in human endometrial cancer. Am J Obstet Gynecol 193(6):1961–1965. doi:http://dx.doi.org/10.1016/j.ajog.2005.04.055
  139. Richardsen E, Uglehus RD, Due J, Busch C, Busund LTR (2008) The prognostic impact of M-CSF, CSF-1 receptor, CD68 and CD3 in prostatic carcinoma. Histopathology 53(1):30–38. doi: 10.1111/j.1365-2559.2008.03058.x PubMedGoogle Scholar
  140. Rigamonti N, Capuano G, Ricupito A, Jachetti E, Grioni M, Generoso L, Freschi M, Bellone M (2011) Modulators of arginine metabolism do not impact on peripheral T-cell tolerance and disease progression in a model of spontaneous prostate cancer. Clin Cancer Res 17(5):1012–1023. doi: 10.1158/1078-0432.ccr-10-2547 PubMedGoogle Scholar
  141. Roca H, Varsos ZS, Sud S, Craig MJ, Ying C, Pienta KJ (2009) CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem 284(49):34342–34354. doi: 10.1074/jbc.M109.042671 PubMedCentralPubMedGoogle Scholar
  142. Sari S, Çandir Ö, Öztürk K (1999) Mast cell variations in tumour tissue and with histopathological grading in specimens of prostatic adenocarcinoma. BJU Int 84(7):851–853. doi: 10.1046/j.1464-410x.1999.00245.x PubMedGoogle Scholar
  143. Schumacher K, Haensch W, Röefzaad C, Schlag PM (2001) Prognostic significance of activated CD8+ T cell infiltrations within esophageal carcinomas. Cancer Res 61(10):3932–3936PubMedGoogle Scholar
  144. Selander KS, Brown DA, Sequeiros GB, Hunter M, Desmond R, Parpala T, Risteli J, Breit SN, Jukkola-Vuorinen A (2007) Serum macrophage inhibitory cytokine-1 concentrations correlate with the presence of prostate cancer bone metastases. Cancer Epidemiol Biomark Prev 16(3):532–537. doi: 10.1158/1055-9965.epi-06-0841 Google Scholar
  145. Sfanos KS, De Marzo AM (2012) Prostate cancer and inflammation: the evidence. Histopathology 60(1):199–215. doi: 10.1111/j.1365-2559.2011.04033.x PubMedCentralPubMedGoogle Scholar
  146. Sfanos KS, Bruno TC, Maris CH, Xu L, Thoburn CJ, DeMarzo AM, Meeker AK, Isaacs WB, Drake CG (2008) Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clin Cancer Res 14(11):3254–3261. doi: 10.1158/1078-0432.ccr-07-5164 PubMedCentralPubMedGoogle Scholar
  147. Sfanos KS, Bruno TC, Meeker AK, De Marzo AM, Isaacs WB, Drake CG (2009a) Human prostate-infiltrating CD8+ T lymphocytes are oligoclonal and PD-1+. Prostate 69(15):1694–1703. doi: 10.1002/pros.21020 PubMedCentralPubMedGoogle Scholar
  148. Sfanos KS, Wilson BA, De Marzo AM, Isaacs WB (2009b) Acute inflammatory proteins constitute the organic matrix of prostatic corpora amylacea and calculi in men with prostate cancer. Proc Natl Acad Sci 106(9):3443–3448. doi: 10.1073/pnas.0810473106 PubMedCentralPubMedGoogle Scholar
  149. Shafique K, Proctor MJ, McMillan DC, Qureshi K, Leung H, Morrison DS (2012) Systemic inflammation and survival of patients with prostate cancer: evidence from the Glasgow inflammation outcome study. Prostate Cancer Prostatic Dis 15(2):195–201PubMedGoogle Scholar
  150. Shimura S, Yang G, Ebara S, Wheeler TM, Frolov A, Thompson TC (2000) Reduced infiltration of tumor-associated macrophages in human prostate cancer: association with cancer progression. Cancer Res 60(20):5857–5861PubMedGoogle Scholar
  151. Shui IM, Stark JR, Penney KL, Schumacher FR, Epstein MM, Pitt MJ, Stampfer MJ, Tamimi RM, Lindstrom S, Sesso HD, Fall K, Ma J, Kraft P, Giovannucci E, Mucci LA (2012) Genetic variation in the toll-like receptor 4 and prostate cancer incidence and mortality. Prostate 72(2):209–216. doi: 10.1002/pros.21423 PubMedCentralPubMedGoogle Scholar
  152. Smith PC, Hobisch A, Lin D-L, Culig Z, Keller ET (2001) Interleukin-6 and prostate cancer progression. Cytokine Growth Factor Rev 12(1):33–40. doi:http://dx.doi.org/10.1016/S1359-6101(00)00021-6
  153. Sroka IC, Sandoval CP, Chopra H, Gard JMC, Pawar SC, Cress AE (2011) Macrophage-dependent cleavage of the laminin receptor α6β1 in prostate cancer. Mol Cancer Res 9(10):1319–1328. doi: 10.1158/1541-7786.mcr-11-0080 PubMedCentralPubMedGoogle Scholar
  154. Stimac G, Reljic A, Spajic B, Dimanovski J, Ruzic B, Ulamec M, Sonicki Z, Kraus O (2009) Aggressiveness of inflammation in histological prostatitis-correlation with total and free prostate specific antigen levels in men with biochemical criteria for prostate biopsy. Scott Med J 54(3):8–12. doi: 10.1258/rsmsmj.54.3.8 PubMedGoogle Scholar
  155. Strouch MJ, Cheon EC, Salabat MR, Krantz SB, Gounaris E, Melstrom LG, Dangi-Garimella S, Wang E, Munshi HG, Khazaie K, Bentrem DJ (2010) Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clin Cancer Res 16(8):2257–2265. doi: 10.1158/1078-0432.ccr-09-1230 PubMedCentralPubMedGoogle Scholar
  156. Sun J, Wiklund F, Zheng SL, Chang B, Bälter K, Li L, Johansson J-E, Li G, Adami H-O, Liu W, Tolin A, Turner AR, Meyers DA, Isaacs WB, Xu J, Grönberg H (2005) Sequence variants in toll-like receptor gene cluster (TLR6-TLR1-TLR10) and prostate cancer risk. J Natl Cancer Inst 97(7):525–532. doi: 10.1093/jnci/dji070 PubMedGoogle Scholar
  157. Svensson RU, Haverkamp JM, Thedens DR, Cohen MB, Ratliff TL, Henry MD (2011) Slow disease progression in a C57BL/6 Pten-deficient mouse model of prostate cancer. Am J Pathol 179(1):502–512. doi:http://dx.doi.org/10.1016/j.ajpath.2011.03.014
  158. Swann JB, Smyth MJ (2007) Immune surveillance of tumors. J Clin Investig 117(5):1137–1146. doi: 10.1172/jci31405 PubMedCentralPubMedGoogle Scholar
  159. Tanner J, Tosato G (1992) Regulation of B-cell growth and immunoglobulin gene transcription by interleukin-6. Blood 79(2):452–459PubMedGoogle Scholar
  160. Theoharides TC, Conti P (2004) Mast cells: the JEKYLL and HYDE of tumor growth. Trends Immunol 25(5):235–241. doi:http://dx.doi.org/10.1016/j.it.2004.02.013
  161. Tuna B, Yorukoglu K, Unlu M, Mungan MU, Kirkali Z (2006) Association of mast cells with microvessel density in renal cell carcinomas. European Urol 50(3):530–534. doi:http://dx.doi.org/10.1016/j.eururo.2005.12.040
  162. Turnis ME, Korman AJ, Drake CG, Vignali DAA (2012) Combinatorial immunotherapy: PD-1 may not be LAG-ing behind any more. OncoImmunology 1(7):1172–1174PubMedCentralPubMedGoogle Scholar
  163. Twillie DA, Eisenberger MA, Carducci MA, Hseih W-S, Kim WY, Simons JW (1995) Interleukin-6: a candidate mediator of human prostate cancer morbidity. Urology 45(3):542–549. doi:http://dx.doi.org/10.1016/S0090-4295(99)80034-X
  164. Ugurlu O, Yaris M, Oztekin CV, Kosan TM, Adsan O, Cetinkaya M (2010) Impacts of antibiotic and anti-inflammatory therapies on serum prostate-specific antigen levels in the presence of prostatic inflammation: a prospective randomized controlled trial. Urol Int 84(2):185–190. doi: 10.1159/000277596 PubMedGoogle Scholar
  165. van Dijk M, Göransson SA, Strömblad S (2013) Cell to extracellular matrix interactions and their reciprocal nature in cancer. Exp Cell Res (0). doi:http://dx.doi.org/10.1016/j.yexcr.2013.02.006
  166. Vasiljeva O, Papazoglou A, Krüger A, Brodoefel H, Korovin M, Deussing J, Augustin N, Nielsen BS, Almholt K, Bogyo M, Peters C, Reinheckel T (2006) Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res 66(10):5242–5250. doi: 10.1158/0008-5472.can-05-4463 PubMedGoogle Scholar
  167. Vesalainen S, Lipponen P, Talja M, Syrjänen K (1994) Histological grade, perineural infiltration, tumour-infiltrating lymphocytes and apoptosis as determinants of long-term prognosis in prostatic adenocarcinoma. European J Cancer 30(12):1797–1803. doi:http://dx.doi.org/10.1016/0959-8049(94)E0159-2
  168. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29(1):235–271. doi: 10.1146/annurev-immunol-031210-101324 PubMedGoogle Scholar
  169. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558. doi: 10.1126/science.1235122 PubMedCentralPubMedGoogle Scholar
  170. Vykhovanets E, Maclennan G, Vykhovanets O, Gupta S (2011) IL-17 Expression by macrophages is associated with proliferative inflammatory atrophy lesions in prostate cancer patients. Int J Clin Exp Pathol 4(6):552–565PubMedCentralPubMedGoogle Scholar
  171. Wallace TA, Prueitt RL, Yi M, Howe TM, Gillespie JW, Yfantis HG, Stephens RM, Caporaso NE, Loffredo CA, Ambs S (2008) Tumor immunobiological differences in prostate cancer between African–American and European–American men. Cancer Res 68(3):927–936. doi: 10.1158/0008-5472.can-07-2608 PubMedGoogle Scholar
  172. Wang W, Bergh A, Damber J-E (2005) Cyclooxygenase-2 expression correlates with local chronic inflammation and tumor neovascularization in human prostate cancer. Clin Cancer Res 11(9):3250–3256. doi: 10.1158/1078-0432.ccr-04-2405 PubMedGoogle Scholar
  173. Wang W, Bergh A, Damber J-E (2009) Morphological transition of proliferative inflammatory atrophy to high-grade intraepithelial neoplasia and cancer in human prostate. Prostate 69(13):1378–1386. doi: 10.1002/pros.20992 PubMedGoogle Scholar
  174. Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA, Frierson HF, Hampton GM (2001) Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 61(16):5974–5978PubMedGoogle Scholar
  175. Welsh JB, Sapinoso LM, Kern SG, Brown DA, Liu T, Bauskin AR, Ward RL, Hawkins NJ, Quinn DI, Russell PJ, Sutherland RL, Breit SN, Moskaluk CA, Frierson HF, Hampton GM (2003) Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proc Natl Acad Sci 100(6):3410–3415. doi: 10.1073/pnas.0530278100 PubMedCentralPubMedGoogle Scholar
  176. Welsh TJ, Green RH, Richardson D, Waller DA, O’Byrne KJ, Bradding P (2005) Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol 23(35):8959–8967. doi: 10.1200/jco.2005.01.4910 PubMedGoogle Scholar
  177. Wiklund FE, Bennet AM, Magnusson PKE, Eriksson UK, Lindmark F, Wu L, Yaghoutyfam N, Marquis CP, Stattin P, Pedersen NL, Adami H-O, Grönberg H, Breit SN, Brown DA (2010) Macrophage inhibitory cytokine-1 (MIC-1/GDF15): a new marker of all-cause mortality. Aging Cell 9(6):1057–1064. doi: 10.1111/j.1474-9726.2010.00629.x PubMedGoogle Scholar
  178. Wilke CM, Kryczek I, Wei S, Zhao E, Wu K, Wang G, Zou W (2011) Th17 cells in cancer: help or hindrance? Carcinogenesis 32(5):643–649. doi: 10.1093/carcin/bgr019 PubMedCentralPubMedGoogle Scholar
  179. Wu C-T, Hsieh C-C, Lin C-C, Chen W-C, Hong J-H, Chen M-F (2012) Significance of IL-6 in the transition of hormone-resistant prostate cancer and the induction of myeloid-derived suppressor cells. J Mol Med 90(11):1343–1355. doi: 10.1007/s00109-012-0916-x PubMedGoogle Scholar
  180. Yang G, Addai J, W-h Tian, Frolov A, Wheeler TM, Thompson TC (2004) Reduced infiltration of class A scavenger receptor positive antigen-presenting cells is associated with prostate cancer progression. Cancer Res 64(6):2076–2082. doi: 10.1158/0008-5472.can-03-4072 PubMedGoogle Scholar
  181. Yokokawa J, Cereda V, Remondo C, Gulley JL, Arlen PM, Schlom J, Tsang KY (2008) Enhanced functionality of CD4+CD25highFoxP3+ regulatory T cells in the peripheral blood of patients with prostate cancer. Clin Cancer Res 14(4):1032–1040. doi: 10.1158/1078-0432.ccr-07-2056 PubMedGoogle Scholar
  182. Yoshii M, Jikuhara A, Mori S, Iwagaki H, Takahashi HK, Nishibori M, Tanaka N (2005) Mast cell tryptase stimulates DLD-1 carcinoma through prostaglandin- and MAP kinase-dependent manners. J Pharmacol Sci 98(4):450–458PubMedGoogle Scholar
  183. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348(3):203–213. doi: 10.1056/NEJMoa020177 PubMedGoogle Scholar
  184. Zhang B, Rong G, Wei H, Zhang M, Bi J, Ma L, Xue X, Wei G, Liu X, Fang G (2008) The prevalence of Th17 cells in patients with gastric cancer. Biochem Biophys Res Commun 374(3):533–537. doi:http://dx.doi.org/10.1016/j.bbrc.2008.07.060
  185. Zhang Q-w, Liu L, Gong C-Y, Shi H-S, Zeng Y-H, Wang X-Z, Zhao Y-W, Wei Y-Q (2012) Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS ONE 7(12):e50946. doi: 10.1371/journal.pone.0050946 PubMedCentralPubMedGoogle Scholar
  186. Zheng SL, Augustsson-Bälter K, Chang B, Hedelin M, Li L, Adami H-O, Bensen J, Li G, Johnasson J-E, Turner AR, Adams TS, Meyers DA, Isaacs WB, Xu J, Grönberg H (2004) Sequence variants of toll-like receptor 4 are associated with prostate cancer risk: results from the cancer prostate in Sweden Study. Cancer Res 64(8):2918–2922. doi: 10.1158/0008-5472.can-03-3280 PubMedGoogle Scholar
  187. Zhou Q, Peng R-Q, Wu X-J, Xia Q, Hou J-H, Ding Y, Zhou Q-M, Zhang X, Pang Z-Z, Wan D-S, Zeng Y-X, Zhang X-S (2010) The density of macrophages in the invasive front is inversely correlated to liver metastasis in colon cancer. J Transl Med 8(1):13PubMedCentralPubMedGoogle Scholar
  188. Zou W, Restifo NP (2010) TH17 cells in tumour immunity and immunotherapy. Nat Rev Immunol 10(4):248–256PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Karen S. Sfanos
    • 1
  • Heidi A. Hempel
    • 1
  • Angelo M. De Marzo
    • 1
    Email author
  1. 1.Department of PathologyThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations