The Inflammation and Liver Cancer

  • Anupam BishayeeEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 816)


Persistent inflammation is known to promote and exacerbate malignancy. Primary liver cancer, mostly hepatocellular carcinoma (HCC), is a clear example of inflammation-related cancer as more than 90 % of HCCs arise in the context of hepatic injury and inflammation. HCC represents the fifth most common malignancy and the third leading cause of cancer-related death worldwide with about one million new cases diagnosed every year with almost an equal number of deaths. Chronic unresolved inflammation is associated with persistent hepatic injury and concurrent regeneration, leading to sequential development of fibrosis, cirrhosis, and eventually HCC. Irrespective of the intrinsic differences among various etiological factors, a common denominator at the origin of HCC is the perpetuation of a wound-healing response activated by parenchymal cell death and the resulting inflammatory cascade. Hence, the identification of fundamental inflammatory signaling pathways causing transition from chronic liver injury to dysplasia and HCC could depict new predictive biomarkers and targets to identify and treat patients with chronic liver inflammation. This chapter critically discusses the roles of several major cytokines, chemokines, growth factors, transcription factors, and enzymes as well as a distinct network of inflammatory signaling pathways in the development and progression of HCC. It also highlights and analyzes preclinical animal studies showing innovative approaches of targeting inflammatory mediators and signaling by a variety of natural compounds and synthetic agents to achieve effective therapy as well as prevention of hepatic malignancy. Additionally, current limitations and potential challenges associated with the inhibition of inflammatory signaling as well as future directions of research to accelerate clinical development of anti-inflammatory agents to prevent and treat liver cancer are presented.


Inflammation Inflammatory signaling Liver cancer HCC Chemoprevention Therapy 



A part of our research on chemoprevention of liver cancer by anti-inflammatory phytoconstituents as presented in this review was carried out at the Northeast Ohio Medical University (Rootstown, OH). I sincerely apologize to those investigators whose contributions were not cited due to space limitation.


  1. Aggarwal BB, Sung B (2011) NF-κB in cancer: a matter of life and death. Cancer Discov 1:469–471PubMedCentralPubMedGoogle Scholar
  2. Ahn B, Han BS, Kim DJ, Ohshima H (1999) Immunohistochemical localization of inducible nitric oxide synthase and 3-nitrotyrosine in rat liver tumors induced by N-nitrosodiethylamine. Carcinogenesis 20:1337–1344PubMedGoogle Scholar
  3. Alwahaibi NY, Budin SB, Mohamed J, Alhamdani A (2010) Nuclear factor-kappa B as a promising target for selenium chemoprevention in rat hepatocarcinogenesis. J Gastroenterol Hepatol 25:786–791PubMedGoogle Scholar
  4. Aravalli RN, Steer CJ, Cressman EN (2008) Molecular mechanisms of hepatocellular carcinoma. Hepatology 48:2047–2063PubMedGoogle Scholar
  5. Aravalli RN, Cressman EN, Steer CJ (2013) Cellular and molecular mechanisms of hepatocellular carcinoma: an update. Arch Toxicol 87:227–247PubMedGoogle Scholar
  6. Aravindaram K, Yang NS (2010) Anti-inflammatory plant natural products for cancer therapy. Planta Med 76:1103–1117PubMedGoogle Scholar
  7. Arsura M, Cavin LG (2005) Nuclear factor-kappaB and liver carcinogenesis. Cancer Lett 229:157–169PubMedGoogle Scholar
  8. Avila MA, Berasain C, Sangro B, Prieto J (2006) New therapies for hepatocellular carcinoma. Oncogene 25:3866–3884PubMedGoogle Scholar
  9. Bard-Chapeau EA, Li S, Ding J, Zhang SS, Zhu HH, Princen F, Fang DD, Han T, Bailly-Maitre B, Poli V, Varki NM, Wang H, Feng GS (2011) Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell 19:629–639PubMedCentralPubMedGoogle Scholar
  10. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedGoogle Scholar
  11. Bartsch H, Montesano R (1984) Relevance of nitrosamines to human cancer. Carcinogenesis 5:1381–1393PubMedGoogle Scholar
  12. Berasain C, García-Trevijano ER, Castillo J, Erroba E, Lee DC, Prieto J, Avila MA (2005) Amphiregulin: an early trigger of liver regeneration in mice. Gastroenterology 128:424–432PubMedGoogle Scholar
  13. Berasain C, Castillo J, Prieto J, Avila MA (2007) New molecular targets for hepatocellular carcinoma: the ErbB1 signaling system. Liver Int 27:174–185PubMedGoogle Scholar
  14. Berasain C, Castillo J, Perugorria MJ, Latasa MU, Prieto J, Avila MA (2009a) Inflammation and liver cancer: new molecular links. Ann N Y Acad Sci 1155:206–221PubMedGoogle Scholar
  15. Berasain C, Perugorria MJ, Latasa MU, Castillo J, Goñi S, Santamaría M, Prieto J, Avila MA (2009b) The epidermal growth factor receptor: a link between inflammation and liver cancer. Exp Biol Med 234:713–725Google Scholar
  16. Bishayee A (2009) Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res 2:409–418Google Scholar
  17. Bishayee A (2012) Editorial: recent advances in the prevention and therapy of hepatocellular carcinoma. Curr Cancer Drug Targets 12:1043–1044PubMedGoogle Scholar
  18. Bishayee A (2013) β-Catenin: a novel biomarker and therapeutic target in liver cancer. In: Georgakilas A (ed) Cancer biomarkers. CRC Press, Boca Raton, pp 51–75Google Scholar
  19. Bishayee A, Dhir N (2009) Resveratrol-mediated chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis: inhibition of cell proliferation and induction of apoptosis. Chem Biol Interact 179:131–144PubMedGoogle Scholar
  20. Bishayee A, Politis T, Darvesh AS (2010a) Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma. Cancer Treat Rev 36:43–53PubMedGoogle Scholar
  21. Bishayee A, Waghray A, Barnes KF, Mbimba T, Bhatia D, Chatterjee M, Darvesh AS (2010b) Suppression of the inflammatory cascade is implicated in resveratrol chemoprevention of experimental hepatocarcinogenesis. Pharm Res 27:1080–1091PubMedGoogle Scholar
  22. Bishayee A, Barnes KF, Bhatia D, Darvesh AS, Carroll RT (2010c) Resveratrol suppresses oxidative stress and inflammatory response in diethylnitrosamine-initiated rat hepatocarcinogenesis. Cancer Prev Res 3:753–763Google Scholar
  23. Bishayee A, Mbimba T, Thoppil RJ, Háznagy-Radnai E, Sipos P, Darvesh AS, Folkesson H, Hohmann J (2011a) Anthocyanin-rich black currant (Ribes nigrum L.) extract affords chemoprevention against diethylnitrosamine-induced hepatocellular carcinogenesis in rats. J Nutr Biochem 22:1035–1046PubMedGoogle Scholar
  24. Bishayee A, Bhatia D, Thoppil RJ, Darvesh AS, Nevo E, Lansky EP (2011b) Pomegranate-mediated chemoprevention of experimental hepatocarcinogenesis involves Nrf2-regulated antioxidant mechanisms. Carcinogenesis 32:888–896PubMedCentralPubMedGoogle Scholar
  25. Bishayee A, Thoppil RJ, Waghray A, Kruse JA, Novotny NA, Darvesh AS (2012) Dietary phytochemicals in the chemoprevention and treatment of hepatocellular carcinoma: in vivo evidence, molecular targets, and clinical relevance. Curr Cancer Drug Targets 12:1191–1232PubMedGoogle Scholar
  26. Bishayee A, Thoppil RJ, Mandal A, Darvesh AS, Ohanyan V, Meszaros JG, Háznagy-Radnai E, Hohmann J, Bhatia D (2013a) Black currant phytoconstituents exert chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis by suppression of the inflammatory response. Mol Carcinog 52:304–317PubMedGoogle Scholar
  27. Bishayee A, Thoppil RJ, Darvesh AS, Ohanyan V, Meszaros JG, Bhatia D (2013b) Pomegranate phytoconstituents blunt the inflammatory cascade in a chemically induced rodent model of hepatocellular carcinogenesis. J Nutr Biochem 24:178–187PubMedGoogle Scholar
  28. Blonski W, Kotlyar DS, Forde KA (2010) Non-viral causes of hepatocellular carcinoma. World J Gastroenterol 16:3603–3615PubMedCentralPubMedGoogle Scholar
  29. Braconi C, Henry JC, Kogure T, Schmittgen T, Patel T (2011) The role of microRNAs in human liver cancers. Semin Onccol 38:752–763Google Scholar
  30. Brownell J, Polyak SJ (2013) Molecular pathways: hepatitis C virus, CXCL10, and the inflammatory road to liver cancer. Clin Cancer Res 19:1347–1352PubMedCentralPubMedGoogle Scholar
  31. Budhu A, Wang XW (2006) The role of cytokines in hepatocellular carcinoma. J Leukoc Biol 80:1197–1213PubMedGoogle Scholar
  32. Calvisi DF, Ladu S, Gorden A, Farina M, Conner EA, Lee JS, Factor VM, Thorgeirsson SS (2006) Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 130:1117–1128PubMedGoogle Scholar
  33. Calvisi DF, Pinna F, Ladu S, Pellegrino R, Muroni MR, Simile MM, Frau M, Tomasi ML, De Miglio MR, Seddaiu MA, Daino L, Sanna V, Feo F, Pascale RM (2008) Aberrant iNOS signaling is under genetic control in rodent liver cancer and potentially prognostic for the human disease. Carcinogenesis 29:1639–1647PubMedGoogle Scholar
  34. Castillo J, Erroba E, Perugorría MJ, Santamaría M, Lee DC, Prieto J, Avila MA, Berasain C (2006) Amphiregulin contributes to the transformed phenotype of human hepatocellular carcinoma cells. Cancer Res 66:6129–6138PubMedGoogle Scholar
  35. Center MM, Jemal A (2011) International trends in liver cancer incidence rates. Cancer Epidemiol Biomarkers Prev 20:2362–2368PubMedGoogle Scholar
  36. Cervello M, Montalto G (2006) Cyclooxygenases in hepatocellular carcinoma. World J Gastroenterol 12:5113–5121PubMedGoogle Scholar
  37. Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TS, Xu J, Sun Y, Liang H, Liu J, Wang J, Tak WY, Pan H, Burock K, Zou J, Voliotis D, Guan Z (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10:25–34PubMedGoogle Scholar
  38. Chiang SH, Bazuine M, Lumeng CN, Geletka LM, Mowers J, White NM, Ma JT, Zhou J, Qi N, Westcott D, Delproposto JB, Blackwell TS, Yull FE, Saltiel AR (2009) The protein kinase IKKepsilon regulates energy balance in obese mice. Cell 138:961–975PubMedCentralPubMedGoogle Scholar
  39. Chuang SE, Cheng AL, Lin JK, Kuo ML (2000) Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats. Food Chem Toxicol 38:991–995PubMedGoogle Scholar
  40. Chuma M, Hige S, Nakanishi M, Ogawa K, Natsuizaka M, Yamamoto Y, Asaka M (2008) 8-Hydroxy-2’-deoxy-guanosine is a risk factor for development of hepatocellular carcinoma in patients with chronic hepatitis C virus infection. J Gastroenterol Hepatol 23:1431–1436PubMedGoogle Scholar
  41. Costa RH, Kalinichenko VV, Holterman AX, Wang X (2003) Transcription factors in liver development, differentiation, and regeneration. Hepatology 38:1331–1347PubMedGoogle Scholar
  42. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867PubMedCentralPubMedGoogle Scholar
  43. Cui W, Gu F, Hu K (2009) Effects and mechanisms of silibinin on human hepatocellular carcinoma xenografts in nude mice. World J Gastroenterol 15:1943–1950PubMedCentralPubMedGoogle Scholar
  44. Dajani OF, Meisdalen K, Guren TK, Aasrum M, Tveteraas IH, Lilleby P, Thoresen GH, Sandnes D, Christoffersen T (2008) Prostaglandin E2 upregulates EGF-stimulated signaling in mitogenic pathways involving Akt and ERK in hepatocytes. J Cell Physiol 214:371–380PubMedGoogle Scholar
  45. Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421PubMedGoogle Scholar
  46. Darvesh AS, Bishayee A (2010) Selenium in the prevention and treatment of hepatocellular carcinoma. Anticancer Agents Med Chem 10:338–345PubMedGoogle Scholar
  47. Darvesh AS, Bishayee A (2013) Chemopreventive and therapeutic potential of tea polyphenols in hepatocellular cancer. Nutr Cancer 65:329–344PubMedGoogle Scholar
  48. Darvesh AS, Aggarwal BB, Bishayee A (2012) Curcumin and liver cancer: a review. Curr Pharm Biotechnol 13:218–228PubMedGoogle Scholar
  49. Davies RA, Knight B, Tian YW, Yeoh GC, Olynyk JK (2006) Hepatic oval cell response to the choline-deficient, ethionine supplemented model of murine liver injury is attenuated by the administration of a cyclo-oxygenase 2 inhibitor. Carcinogenesis 27:1607–1616PubMedGoogle Scholar
  50. de Almagro MC, Vucic D (2012) The inhibitor of apoptosis (IAP) proteins are critical regulators of signaling pathways and targets for anti-cancer therapy. Exp Oncol 34:200–211PubMedGoogle Scholar
  51. Denda A, Kitayama W, Murata A, Kishida H, Sasaki Y, Kusuoka O, Tsujiuchi T, Tsutsumi M, Nakae D, Takagi H, Konishi Y (2002) Increased expression of cyclooxygenase-2 protein during rat hepatocarcinogenesis caused by a choline-deficient, L-amino acid-defined diet and chemopreventive efficacy of a specific inhibitor, nimesulide. Carcinogenesis 23:245–256PubMedGoogle Scholar
  52. Denda A, Kitayama W, Kishida H, Murata N, Tamura K, Kusuoka O, Tsutsumi M, Nishikawa F, Kita E, Nakae D, Konishi Y, Kuniyasu H (2007) Expression of inducible nitric oxide (NO) synthase but not prevention by its gene ablation of hepatocarcinogenesis with fibrosis caused by a choline-deficient, L-amino acid-defined diet in rats and mice. Nitric Oxide 16:164–176PubMedGoogle Scholar
  53. Demaria S, Pikarsky E, Karin M, Coussens LM, Chen YC, El-Omar EM, Trinchieri G, Dubinett SM, Mao JT, Szabo E, Krieg A, Weiner GJ, Fox BA, Coukos G, Wang E, Abraham RT, Carbone M, Lotze MT (2010) Cancer and inflammation: promise for biologic therapy. J Immunother 33:335–351PubMedCentralPubMedGoogle Scholar
  54. Deviere J, Content J, Denys C, Vandenbussche P, Schandene L, Wybran J, Dupont E (1989) High interleukin-6 serum levels and increased production by leucocytes in alcoholic liver cirrhosis. Correlation with IgA serum levels and lymphokines production. Clin Exp Immunol 77:221–225PubMedCentralPubMedGoogle Scholar
  55. Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107PubMedGoogle Scholar
  56. DiDonato JA, Mercurio F, Karin M (2012) NF-κB and the link between inflammation and cancer. Immunol Rev 246:379–400PubMedGoogle Scholar
  57. Dutkowski P, De Rougemont O, Müllhaupt B, Clavien PA (2010) Current and future trends in liver transplantation in Europe. Gastroenterology 138:802–809Google Scholar
  58. El-Serag HB (2004) Hepatocellular carcinoma: recent trends in the United States. Gastroenterology 127:S27–S34PubMedGoogle Scholar
  59. El-Serag HB, Hampel H, Javadi F (2006) The association between diabetes and hepatocellular carcinoma: a systematic review of epidemiologic evidence. Clin Gastroenterol Hepatol 4:369–380PubMedGoogle Scholar
  60. El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132:2557–2576PubMedGoogle Scholar
  61. Espindola RM, Mazzantini RP, Ong TP, de Conti A, Heidor R, Moreno FS (2005) Geranylgeraniol and β-ionone inhibit hepatic preneoplastic lesions, cell proliferation, total plasma cholesterol and DNA damage during the initial phases of hepatocarcinogenesis, but only the former inhibits NF-κB activation. Carcinogenesis 26:1091–1099Google Scholar
  62. Farazi PA, DePinho RA (2006) Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6:674–687PubMedGoogle Scholar
  63. Futakuchi M, Ogawa K, Sano M, Tamano S, Takeshita F, Shirai T (2002) Suppression of lung metastasis by aspirin but not indomethacin in an in vivo model of chemically induced hepatocellular carcinoma. Jpn J Cancer Res 93:1175–1181PubMedGoogle Scholar
  64. Gao J, Xie L, Yang WS, Zhang W, Gao S, Wang J, Xiang YB (2012) Risk factors of hepatocellular carcinoma: current status and perspectives. Asian Pac J Cancer Prev 13:743–752PubMedGoogle Scholar
  65. Ghosh S, Karin M (2002) Missing pieces in the NF-κB puzzle. Cell 109:S81–S96PubMedGoogle Scholar
  66. Giannitrapani L, Ingrao S, Soresi M, Florena AM, La Spada E, Sandonato L, D’Alessandro N, Cervello M, Montalto G (2009) Cyclooxygenase-2 expression in chronic liver diseases and hepatocellular carcinoma: an immunohistochemical study. Ann NY Acad Sci 1155:293–299PubMedGoogle Scholar
  67. Gramantieri L, Fornari F, Callegari E, Sabbioni S, Lanza G, Croce CM, Bolondi L, Negrini M (2008) MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med 12:2189–2204PubMedGoogle Scholar
  68. Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445PubMedGoogle Scholar
  69. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899PubMedCentralPubMedGoogle Scholar
  70. Gupta SC, Kim JH, Prasad S, Aggarwal BB (2010) Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev 29:405–434PubMedCentralPubMedGoogle Scholar
  71. Guicciardi ME, Mott JL, Bronk SF, Kurita S, Fingas CD, Gores GJ (2011) Cellular inhibitor of apoptosis 1 (cIAP-1) degradation by caspase 8 during TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Exp Cell Res 317:107–116PubMedCentralPubMedGoogle Scholar
  72. Gyrd-Hansen M, Meier P (2010) IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer 10:561–574PubMedGoogle Scholar
  73. Han YP, Zhou L, Wang J, Xiong S, Garner WL, French SW, Tsukamoto H (2004) Essential role of matrix metalloproteinases in interleukin-1-induced myofibroblastic activation of hepatic stellate cell in collagen. J Biol Chem 279:4820–4828PubMedCentralPubMedGoogle Scholar
  74. Han C, Michalopoulos GK, Wu T (2006) Prostaglandin E2 receptor EP1 transactivates EGFR/MET receptor tyrosine kinases and enhances invasiveness in human hepatocellular carcinoma cells. J Cell Physiol 207:261–270PubMedGoogle Scholar
  75. Hatziapostolou M, Polytarchou C, Aggelidou E, Drakaki A, Poultsides GA, Jaeger SA, Ogata H, Karin M, Struhl K, Hadzopoulou-Cladaras M, Iliopoulos D (2011) An HNF4α-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell 147:1233–1247PubMedCentralPubMedGoogle Scholar
  76. Haybaeck J, Zeller N, Wolf MJ, Weber A, Wagner U, Kurrer MO, Bremer J, Iezzi G, Graf R, Clavien PA, Thimme R, Blum H, Nedospasov SA, Zatloukal K, Ramzan M, Ciesek S, Pietschmann T, Marche PN, Karin M, Kopf M, Browning JL, Aguzzi A, Heikenwalder M (2009) A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell 16:295–308PubMedGoogle Scholar
  77. Heydtmann M, Adams DH (2009) Chemokines in the immunopathogenesis of hepatitis C infection. Hepatology 49:676–688PubMedCentralPubMedGoogle Scholar
  78. He G, Karin M (2011) NF-κB and STAT3: key players in liver inflammation and cancer. Cell Res 21:159–168PubMedCentralPubMedGoogle Scholar
  79. He G, Yu GY, Temkin V, Ogata H, Kuntzen C, Sakurai T, Sieghart W, Peck-Radosavljevic M, Leffert HL, Karin M (2010) Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell 17:286–297PubMedCentralPubMedGoogle Scholar
  80. Hoffmann A, Baltimore D (2006) Circuitry of nuclear factor kappaB signaling. Immunol Rev 210:171–186PubMedGoogle Scholar
  81. Hoshida Y, Toffanin S, Lachenmayer A, Villanueva A, Minguez B, Llovet JM (2010) Molecular classification and novel targets in hepatocellular carcinoma: recent advancements. Semin Liver Dis 30:35–51PubMedCentralPubMedGoogle Scholar
  82. Huang F, Geng XP (2010) Chemokines and hepatocellular carcinoma. World J Gastroenterol 16:1832–1836PubMedCentralPubMedGoogle Scholar
  83. Huynh H (2010) Molecularly targeted therapy in hepatocellular carcinoma. Biochem Pharmacol 80:550–560PubMedGoogle Scholar
  84. Je Y, Schutz FAB, Choueiri TK (2009) Risk of bleeding with vascular endothelial growth factor receptor tyrosine-kinase inhibitors sunitinib and sorafenib: a systematic review and meta-analysis of clinical trials. Lancet Oncol 10:967–974PubMedGoogle Scholar
  85. Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, Ambs S, Chen Y, Meltzer PS, Croce CM, Qin LX, Man K, Lo CM, Lee J, Ng IO, Fan J, Tang ZY, Sun HC, Wang XW (2009) MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 361:1437–147PubMedCentralPubMedGoogle Scholar
  86. Karin M (2009) NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol 1:a000141PubMedCentralPubMedGoogle Scholar
  87. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18:621–663PubMedGoogle Scholar
  88. Kawanishi S, Hiraku Y, Pinlaor S, Ma N (2006) Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol Chem 387:365–372PubMedGoogle Scholar
  89. Kenya PR (1990) Oral contraceptives use and liver tumours: a review. East Afr Med J 67:146–153PubMedGoogle Scholar
  90. Khan MS, Devaraj H, Devaraj N (2011) Chrysin abrogates early hepatocarcinogenesis and induces apoptosis in N-nitrosodiethylamine-induced preneoplastic nodules in rats. Toxicol Appl Pharmacol 251:85–94PubMedGoogle Scholar
  91. Kim SF, Huri DA, Snyder SH (2005) Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 310:1966–1970PubMedGoogle Scholar
  92. Kim YS, Young MR, Bobe G, Colburn NH, Milner JA (2009) Bioactive food components, inflammatory targets, and cancer prevention. Cancer Prev Res 2:200–208Google Scholar
  93. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017PubMedCentralPubMedGoogle Scholar
  94. Kuo PC, Abe KY, Schroeder RA (1997) Oxidative stress increases hepatocyte iNOS gene transcription and promoter activity. Biochem Biophys Res Commun 234:289–292PubMedGoogle Scholar
  95. Korula J, Yellin A, Kanel G, Campofiori G, Nichols P (1991) Hepatocellular carcinoma coexisting with hepatic adenoma. Incidental discovery after long-term oral contraceptive use. West J Med 155:416–418PubMedCentralPubMedGoogle Scholar
  96. Lachenmayer A, Alsinet C, Chang CY, Llovet JM (2010) Molecular approaches to treatment of hepatocellular carcinoma. Dig Liver Dis 42:S264–S272PubMedCentralPubMedGoogle Scholar
  97. Lang K, Danchenko N, Gondek K, Shah S, Thompson D (2009) The burden of illness associated with hepatocellular carcinoma in the United States. J Hepatol 50:89–99PubMedGoogle Scholar
  98. Larsson SC, Wolk A (2007) Overweight, obesity and risk of liver cancer: a meta-analysis of cohort studies. Br J Cancer 97:1005–1008PubMedCentralPubMedGoogle Scholar
  99. Lee Y, Park US, Choi I, Yoon SK, Park YM, Lee YI (1998) Human interleukin 6 gene is activated by hepatitis B virus-X protein in human hepatoma cells. Clin Cancer Res 4:1711–1717PubMedGoogle Scholar
  100. Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z, Forman S, Jove R, Pardoll DM, Yu H (2009) Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell 15:283–293PubMedCentralPubMedGoogle Scholar
  101. Liu W, Nakamura H, Tsujimura T, Cheng J, Yamamoto T, Iwamoto Y, Imanishi H, Shimomura S, Yamamoto T, Hirasawa T, Inagaki S, Nishiguchi S, Hada T (2006) Chemoprevention of spontaneous development of hepatocellular carcinomas in fatty liver Shionogi mice by a cyclooxygenase-2 inhibitor. Cancer Sci 97:768–773PubMedGoogle Scholar
  102. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Häussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J, SHARP Investigators Study Group (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390Google Scholar
  103. Lu SC (2010) Where are we in the chemoprevention of hepatocellular carcinoma? Hepatology 51:734–736PubMedGoogle Scholar
  104. Lu XL, He SX, Ren MD, Wang YL, Zhang YX, Liu EQ (2012) Chemopreventive effect of saikosaponin-d on diethylinitrosamine-induced hepatocarcinogenesis: involvement of CCAAT/enhancer binding protein β and cyclooxygenase-2. Mol Med Rep 5:637–644PubMedGoogle Scholar
  105. Luedde T, Schwabe RF (2011) NF-κB in the liver: linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 8:108–118PubMedCentralPubMedGoogle Scholar
  106. Luedde T, Beraza N, Kotsikoris V, van Loo G, Nenci A, De Vos R, Roskams T, Trautwein C, Pasparakis M (2007) Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11:119–132PubMedGoogle Scholar
  107. Ma Y, Wang J, Liu L, Zhu H, Chen X, Pan S, Sun X, Jiang H (2011) Genistein potentiates the effect of arsenic trioxide against human hepatocellular carcinoma: role of Akt and nuclear factor-κB. Cancer Lett 301:75–84PubMedGoogle Scholar
  108. Maeda S, Kamata H, Luo JL, Leffert H, Karin M (2005) IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121:977–990PubMedGoogle Scholar
  109. Maeda S, Hikiba Y, Sakamoto K, Nakagawa H, Hirata Y, Hayakawa Y, Yanai A, Ogura K, Karin M, Omata M (2009) Ikappa B kinasebeta/nuclear factor-kappaB activation controls the development of liver metastasis by way of interleukin-6 expression. Hepatology 50:1851–1860PubMedGoogle Scholar
  110. Maione D, Di Carlo E, Li W, Musiani P, Modesti A, Peters M, Rose-John S, Della Rocca C, Tripodi M, Lazzaro D, Taub R, Savino R, Ciliberto G (1998) Coexpression of IL-6 and soluble IL-6R causes nodular regenerative hyperplasia and adenomas of the liver. EMBO J 17:5588–5597PubMedCentralPubMedGoogle Scholar
  111. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444PubMedGoogle Scholar
  112. Markiewski MM, DeAngelis RA, Lambris JD (2006) Liver inflammation and regeneration: two distinct biological phenomena or parallel pathophysiologic processes? Mol Immunol 43:45–56PubMedGoogle Scholar
  113. Márquez-Rosado L, Trejo-Solís MC, García-Cuéllar CM, Villa-Treviño S (2005) Celecoxib, a cyclooxygenase-2 inhibitor, prevents induction of liver preneoplastic lesions in rats. J Hepatol 43:653–660PubMedGoogle Scholar
  114. Marra M, Sordelli IM, Lombardi A, Lamberti M, Tarantino L, Giudice A, Stiuso P, Abbruzzese A, Sperlongano R, Accardo M, Agresti M, Caraglia M, Sperlongano P (2011) Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: an overview. J Transl Med 9:171PubMedCentralPubMedGoogle Scholar
  115. Marrero CR, Marrero JA (2007) Viral hepatitis and hepatocellular carcinoma. Arch Med Res 38:612–620PubMedGoogle Scholar
  116. Matsuzaki K, Murata M, Yoshida K, Sekimoto G, Uemura Y, Sakaida N, Kaibori M, Kamiyama Y, Nishizawa M, Fujisawa J, Okazaki K, Seki T (2007) Chronic inflammation associated with hepatitis C virus infection perturbs hepatic transforming growth factor beta signaling, promoting cirrhosis and hepatocellular carcinoma. Hepatology 46:48–57PubMedGoogle Scholar
  117. Mauad TH, van Nieuwkerk CM, Dingemans KP, Smit JJ, Schinkel AH, Notenboom RG, van den Bergh Weerman MA, Verkruisen RP, Groen AK, Oude Elferink RP et al (1994) Mice with homozygous disruption of the mdr2 P-glycoprotein gene. A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis. Am J Pathol 145:1237–1245PubMedCentralPubMedGoogle Scholar
  118. Mauriz JL, Linares P, Macias RI, Jorquera F, Honrado E, Olcoz JL, González P, González-Gallego J (2003) TNP-470 inhibits oxidative stress, nitric oxide production and nuclear factor kappa B activation in a rat model of hepatocellular carcinoma. Free Radic Res 37:841–848PubMedGoogle Scholar
  119. Mbimba T, Awale P, Bhatia D, Geldenhuys WJ, Darvesh AS, Carroll RT, Bishayee A (2012) Alteration of hepatic proinflammatory cytokines is involved in the resveratrol-mediated chemoprevention of chemically-induced hepatocarcinogenesis. Curr Pharm Biotechnol 13:229–234PubMedGoogle Scholar
  120. McNaughton L, Puttagunta L, Martinez-Cuesta MA, Kneteman N, Mayers I, Moqbel R, Hamid Q, Radomski MW (2002) Distribution of nitric oxide synthase in normal and cirrhotic human liver. Proc Natl Acad Sci USA 99:17161–17166PubMedCentralPubMedGoogle Scholar
  121. Mehrotra S, Languino LR, Raskett CM, Mercurio AM, Dohi T, Altieri DC (2010) IAP regulation of metastasis. Cancer Cell 17:53–64PubMedCentralPubMedGoogle Scholar
  122. Mills JJ, Chari RS, Boyer IJ, Gould MN, Jirtle RL (1995) Induction of apoptosis in liver tumors by the monoterpene perillyl alcohol. Cancer Res 55:979–983PubMedGoogle Scholar
  123. Ming L, Thorgeirsson SS, Gail MH, Lu P, Harris CC, Wang N, Shao Y, Wu Z, Liu G, Wang X, Sun Z (2002) Dominant role of hepatitis B virus and cofactor role of aflatoxin in hepatocarcinogenesis in Qidong, China. Hepatology 36:1214–1220PubMedGoogle Scholar
  124. Murakami A (2009) Chemoprevention with phytochemicals targeting inducible nitric oxide synthase. Forum Nutr 61:193–203PubMedGoogle Scholar
  125. Muriel P (2009) NF-kappaB in liver diseases: a target for drug therapy. J Appl Toxicol 29:91–100PubMedGoogle Scholar
  126. Murillo MM, Carmona-Cuenca I, Del Castillo G, Ortiz C, Roncero C, Sánchez A, Fernández M, Fabregat I (2007) Activation of NADPH oxidase by transforming growth factor-beta in hepatocytes mediates up-regulation of epidermal growth factor receptor ligands through a nuclear factor-kappaB-dependent mechanism. Biochem J 405:251–259PubMedCentralPubMedGoogle Scholar
  127. Murugan RS, Priyadarsini RV, Ramalingam K, Hara Y, Karunagaran D, Nagini S (2010) Intrinsic apoptosis and NF-κB signaling are potential molecular targets for chemoprevention by black tea polyphenols in HepG2 cells in vitro and in a rat hepatocarcinogenesis model in vivo. Food Chem Toxicol 48:3281–3287PubMedGoogle Scholar
  128. Nakagawa H, Maeda S (2012) Inflammation- and stress-related signaling pathways in hepatocarcinogenesis. World J Gastroenterol 18:4071–4081PubMedCentralPubMedGoogle Scholar
  129. Nakagawa H, Maeda S, Yoshida H, Tateishi R, Masuzaki R, Ohki T, Hayakawa Y, Kinoshita H, Yamakado M, Kato N, Shiina S, Omata M (2009) Serum IL-6 levels and the risk for hepatocarcinogenesis in chronic hepatitis C patients: an analysis based on gender differences. Int J Cancer 125:2264–2269PubMedGoogle Scholar
  130. Nair S, Mason A, Eason J, Loss G, Perrillo RP (2002) Is obesity an independent risk factor for hepatocellular carcinoma in cirrhosis? Hepatology 36:150–155PubMedGoogle Scholar
  131. Naugler WE, Karin M (2008) The wolf in sheep’s clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med 14:109–119PubMedGoogle Scholar
  132. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, Karin M (2007) Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317:121–124PubMedGoogle Scholar
  133. Nejak-Bowen KN, Monga SP (2011) Beta-catenin signaling, liver regeneration and hepatocellular cancer: sorting the good from the bad. Semin Cancer Biol 21:44–58PubMedCentralPubMedGoogle Scholar
  134. Nishikawa-Ogawa M, Wanibuchi H, Morimura K, Kinoshita A, Nishikawa T, Hayashi S, Yano Y, Fukushima S (2006) N-acetylcysteine and S-methylcysteine inhibit MeIQx rat hepatocarcinogenesis in the post-initiation stage. Carcinogenesis 27:982–988PubMedGoogle Scholar
  135. Nordenstedt H, White DL, El-Serag HB (2010) The changing pattern of epidemiology in hepatocellular carcinoma. Dig Liver Dis 42:S206–S214PubMedCentralPubMedGoogle Scholar
  136. Ogata H, Kobayashi T, Chinen T, Takaki H, Sanada T, Minoda Y, Koga K, Takaesu G, Maehara Y, Iida M, Yoshimura A (2006) Deletion of the SOCS3 gene in liver parenchymal cells promotes hepatitis-induced hepatocarcinogenesis. Gastroenterology 131:179–193PubMedGoogle Scholar
  137. Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18:6853–6866PubMedGoogle Scholar
  138. Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, Osterreicher CH, Takahashi H, Karin M (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140:197–208PubMedCentralPubMedGoogle Scholar
  139. Pfitzner E, Kliem S, Baus D, Litterst CM (2004) The role of STATs in inflammation and inflammatory diseases. Curr Pharm Des 10:2839–2850PubMedGoogle Scholar
  140. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431:461–466PubMedGoogle Scholar
  141. Qian GS, Ross RK, Yu MC, Yuan JM, Gao YT, Henderson BE, Wogan GN, Groopman JD (1994) A follow-up study of urinary markers of aflatoxin exposure and liver cancer risk in Shanghai, People’s Republic of China. Cancer Epidemiol Biomarkers Prev 3:3–10PubMedGoogle Scholar
  142. Rahman MA, Dhar DK, Yamaguchi E, Maruyama S, Sato T, Hayashi H, Ono T, Yamanoi A, Kohno H, Nagasue N (2001) Coexpression of inducible nitric oxide synthase and COX-2 in hepatocellular carcinoma and surrounding liver: possible involvement of COX-2 in the angiogenesis of hepatitis C virus-positive cases. Clin Cancer Res 7:1325–1332PubMedGoogle Scholar
  143. Ramakrishnan G, Raghavendran HRB, Vinodhkumar R, Devaki T (2006) Suppression of N-nitrosodiethylamine induced hepatocarcinogenesis by silymarin in rats. Chem-Biol Interact 161:104–114PubMedGoogle Scholar
  144. Ramakrishnan G, Elinos-Báez CM, Jagan S, Augustine TA, Kamaraj S, Anandakumar P, Devaki T (2008) Silymarin downregulates COX-2 expression and attenuates hyperlipidemia during NDEA-induced rat hepatocellular carcinoma. Mol Cell Biochem 313:53–61PubMedGoogle Scholar
  145. Rogers AB, Theve EJ, Feng Y, Fry RC, Taghizadeh K, Clapp KM, Boussahmain C, Cormier KS, Fox JG (2007) Hepatocellular carcinoma associated with liver-gender disruption in male mice. Cancer Res 67:11536–11546PubMedGoogle Scholar
  146. Ruggieri A, Barbati C, Malorni W (2010) Cellular and molecular mechanisms involved in hepatocellular carcinoma gender disparity. Int J Cancer 127:499–504PubMedGoogle Scholar
  147. Sakamoto T, Higaki Y, Hara M, Ichiba M, Horita M, Mizuta T, Eguchi Y, Yasutake T, Ozaki I, Yamamoto K, Onohara S, Kawazoe S, Shigematsu H, Koizumi S, Tanaka K (2008) Interaction between interleukin-1β-31T/C gene polymorphism and drinking and smoking habits on the risk of hepatocellular carcinoma among Japanese. Cancer Lett 271:98–104PubMedGoogle Scholar
  148. Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G, Karin M (2008) Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 14:156–165PubMedCentralPubMedGoogle Scholar
  149. Schneider-Merck T, Borbath I, Charette N, De Saeger C, Abarca J, Leclercq I, Horsmans Y, Stärkel P (2009) The Ras inhibitor farnesylthiosalicyclic acid (FTS) prevents nodule formation and development of preneoplastic foci of altered hepatocytes in rats. Eur J Cancer 45:2050–2060PubMedGoogle Scholar
  150. Schütte K, Bornschein J, Malfertheiner P (2009) Hepatocellular carcinoma—epidemiological trends and risk factors. Dig Dis 27:80–92PubMedGoogle Scholar
  151. Sengupta S, Bishayee A (2010) MicroRNAs in cancer therapy: from bench to bedside. Curr Cancer Ther Rev 6:157–162Google Scholar
  152. Senn JJ, Klover PJ, Nowak IA, Mooney RA (2002) Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51:3391–3399PubMedGoogle Scholar
  153. Senthil M, Mailey B, Leong L, Chung V, Yen Y, Chen YJ, Marx H, Kim J (2010) Liver-directed regional therapy in the multi-disciplinary management of hepatocellular cancer. Curr Cancer Ther Rev 6:19–25Google Scholar
  154. Sherman M (2005) Hepatocellular carcinoma: epidemiology, risk factors, and screening. Semin Liver Dis 25:143–154PubMedGoogle Scholar
  155. Shimizu M, Sakai H, Shirakami Y, Yasuda Y, Kubota M, Terakura D, Baba A, Ohno T, Hara Y, Tanaka T, Moriwaki H (2011a) Preventive effects of (-)-epigallocatechin gallate on diethylnitrosamine-induced liver tumorigenesis in obese and diabetic C57BL/KsJ-db/db mice. Cancer Prev Res 4:396–403Google Scholar
  156. Shimizu M, Sakai H, Shirakami Y, Iwasa J, Yasuda Y, Kubota M, Takai K, Tsurumi H, Tanaka T, Moriwaki H (2011b) Acyclic retinoid inhibits diethylnitrosamine-induced liver tumorigenesis in obese and diabetic C57BLKS/J- +(db)/+Lepr(db) mice. Cancer Prev Res 4:128–136Google Scholar
  157. Shimizu M, Yasuda Y, Sakai H, Kubota M, Terakura D, Baba A, Ohno T, Kochi T, Tsurumi H, Tanaka T, Moriwaki H (2011c) Pitavastatin suppresses diethylnitrosamine-induced liver preneoplasms in male C57BL/KsJ-db/db obese mice. BMC Cancer 11:281PubMedCentralPubMedGoogle Scholar
  158. Shimizu M, Tanaka T, Moriwaki H (2013) Obesity and hepatocellular carcinoma: targeting obesity-related inflammation for chemoprevention of liver carcinogenesis. Semin Immunopathol 35:191–202PubMedGoogle Scholar
  159. Shiota G, Okubo M, Noumi T, Noguchi N, Oyama K, Takano Y, Yashima K, Kishimoto Y, Kawasaki H (1999) Cyclooxygenase-2 expression in hepatocellular carcinoma. Hepatogastroenterology 46:407–412PubMedGoogle Scholar
  160. Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. Clin Invest 116:1793–1801Google Scholar
  161. Sibilia M, Kroismayr R, Lichtenberger BM, Natarajan A, Hecking M, Holcmann M (2007) The epidermal growth factor receptor: from development to tumorigenesis. Differentiation 75:770–787PubMedGoogle Scholar
  162. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30PubMedGoogle Scholar
  163. Silke J, Meier P (2013) Inhibitor of apoptosis (IAP) proteins-modulators of cell death and inflammation. Cold Spring Harb Perspect Biol 5: a008730Google Scholar
  164. Simile MM, Pagnan G, Pastorino F, Brignole C, De Miglio MR, Muroni MR, Asara G, Frau M, Seddaiu MA, Calvisi DF, Feo F, Ponzoni M, Pascale RM (2005) Chemopreventive N-(4-hydroxyphenyl) retinamide (fenretinide) targets deregulated NF-κB and Mat1A genes in the early stages of rat liver carcinogenesis. Carcinogenesis 26:417–427PubMedGoogle Scholar
  165. Sivaramakrishnan V, Niranjali Devaraj S (2009) Morin regulates the expression of NF-κB-p65, COX-2 and matrix metalloproteinases in diethylnitrosamine induced rat hepatocellular carcinoma. Chem Biol Interact 180:353–359PubMedGoogle Scholar
  166. Sivaramakrishnan V, Niranjali Devaraj S (2010) Morin fosters apoptosis in experimental hepatocellular carcinogenesis model. Chem Biol Interact 183:284–292PubMedGoogle Scholar
  167. Stärkel P, Charette N, Borbath I, Schneider-Merck T, De Saeger C, Abarca J, Leclercq I, Horsmans Y (2012) Ras inhibition in hepatocarcinoma by S-trans-trans-farnesylthiosalicyclic acid: association of its tumor preventive effect with cell proliferation, cell cycle events, and angiogenesis. Mol Carcinog 51:816–825PubMedGoogle Scholar
  168. Subramaniam A, Shanmugam MK, Perumal E, Li F, Nachiyappan A, Dai X, Swamy SN, Ahn KS, Kumar AP, Tan BK, Hui KM, Sethi G (2013) Potential role of signal transducer and activator of transcription (STAT)3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma. Biochim Biophys Acta 1835:46–60PubMedGoogle Scholar
  169. Sun B, Karin M (2012) Obesity, inflammation, and liver cancer. J Hepatol 56:704–713PubMedCentralPubMedGoogle Scholar
  170. Sung YK, Hwang SY, Kim JO, Bae HI, Kim JC, Kim MK (2004) The correlation between cyclooxygenase-2 expression and hepatocellular carcinogenesis. Mol Cells 17:35–38PubMedGoogle Scholar
  171. Szabo G, Lippai D (2012) Molecular hepatic carcinogenesis: impact of inflammation. Dig Dis 30:243–248PubMedGoogle Scholar
  172. Tanaka H, Fujita N, Sugimoto R, Urawa N, Horiike S, Kobayashi Y, Iwasa M, Ma N, Kawanishi S, Watanabe S, Kaito M, Takei Y (2008) Hepatic oxidative DNA damage is associated with increased risk for hepatocellular carcinoma in chronic hepatitis C. Br J Cancer 98:580–586PubMedCentralPubMedGoogle Scholar
  173. Taub R (2003) Hepatoprotection via the IL-6/Stat3 pathway. J Clin Invest 112:978–980PubMedCentralPubMedGoogle Scholar
  174. Thoppil RJ, Bhatia D, Barnes KF, Háznagy-Radnai E, Hohmann J, Darvesh AS, Bishayee A (2012) Black currant anthocyanins abrogate oxidative stress through Nrf2-mediated antioxidant mechanisms in a rat model of hepatocellular carcinoma. Curr Cancer Drug Targets 12:1244–1257PubMedGoogle Scholar
  175. Ueno S, Aoki D, Kubo F, Hiwatashi K, Matsushita K, Oyama T, Maruyama I, Aikou T (2005) Roxithromycin inhibits constitutive activation of nuclear factor & #x03BA;B by diminishing oxidative stress in a rat model of hepatocellular carcinoma. Clin Cancer Res 11:5645–5650PubMedGoogle Scholar
  176. Wai PY, Kuo PC (2012) Intersecting pathways in inflammation and cancer: hepatocellular carcinoma as a paradigm. World J Clin Oncol 10:15–23Google Scholar
  177. Wang LY, Chen CJ, Zhang YJ, Tsai WY, Lee PH, Feitelson MA, Lee CS, Santella RM (1998) 4-Aminobiphenyl DNA damage in liver tissue of hepatocellular carcinoma patients and controls. Am J Epidemiol 147:315–323PubMedGoogle Scholar
  178. Wang Y, Kato N, Hoshida Y, Yoshida H, Taniguchi H, Goto T, Moriyama M, Otsuka M, Shiina S, Shiratori Y, Ito Y, Omata M (2003) Interleukin-1β gene polymorphisms associated with hepatocellular carcinoma in hepatitis C virus infection. Hepatology 37:65–71PubMedGoogle Scholar
  179. Wang Y, Ausman LM, Greenberg AS, Russell RM, Wang XD (2009a) Nonalcoholic steatohepatitis induced by a high-fat diet promotes diethylnitrosamine-initiated early hepatocarcinogenesis in rats. Int J Cancer 124:540–546PubMedCentralPubMedGoogle Scholar
  180. Wang B, Majumder S, Nuovo G, Kutay H, Volinia S, Patel T, Schmittgen TD, Croce C, Ghoshal K, Jacob ST (2009b) Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice. Hepatology 50:1152–1161PubMedCentralPubMedGoogle Scholar
  181. Wang Y, Ausman LM, Greenberg AS, Russell RM, Wang XD (2010) Dietary lycopene and tomato extract supplementations inhibit nonalcoholic steatohepatitis-promoted hepatocarcinogenesis in rats. Int J Cancer 126:1788–1796PubMedCentralPubMedGoogle Scholar
  182. Weber A, Boege Y, Reisinger F, Heikenwälder M (2011) Chronic liver inflammation and hepatocellular carcinoma: persistence matters. Swiss Med Wkly 141:w13197PubMedGoogle Scholar
  183. Weinhold B, Rüther U (1997) Interleukin-6-dependent and -independent regulation of the human C-reactive protein gene. Biochem J 327:425–429PubMedCentralPubMedGoogle Scholar
  184. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808PubMedCentralPubMedGoogle Scholar
  185. West AP, Koblansky AA, Ghosh S (2006) Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol 22:409–437PubMedGoogle Scholar
  186. White LA, Menzin J, Korn JR, Friedman M, Lang K, Ray S (2012) Medical care costs and survival associated with hepatocellular carcinoma among the elderly. Clin Gastroenterol Hepatol 10:547–554PubMedGoogle Scholar
  187. Whittaker S, Marais R, Zhu AX (2010) The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 29:4989–5005PubMedGoogle Scholar
  188. Wieckowska A, Papouchado BG, Li Z, Lopez R, Zein NN, Feldstein AE (2008) Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am J Gastroenterol 103:1372–1379PubMedGoogle Scholar
  189. Williams CS, Mann M, DuBois RN (1999) The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18:7908–7916PubMedGoogle Scholar
  190. Wilson JF (2005) Liver cancer on the rise. Ann Intern Med 142:1029–1032PubMedGoogle Scholar
  191. Wong VW, Yu J, Cheng AS, Wong GL, Chan HY, Chu ES, Ng EK, Chan FK, Sung JJ, Chan HL (2009) High serum interleukin-6 level predicts future hepatocellular carcinoma development in patients with chronic hepatitis B. Int J Cancer 124:2766–2770PubMedGoogle Scholar
  192. Wong CM, Kai AK, Tsang FH, Ng IO (2013) Regulation of hepatocarcinogenesis by microRNAs. Front Biosci 5:49–60Google Scholar
  193. Wu T (2005) Cycloygenase-2 and prostaglandin signaling in cholangiocarcinoma. Biochim Biophys Acta 1755:135–150PubMedGoogle Scholar
  194. Wu T (2006) Cyclooxygenase-2 in hepatocellular carcinoma. Cancer Treat Rev 32:28–44PubMedGoogle Scholar
  195. Wunderlich FT, Luedde T, Singer S, Schmidt-Supprian M, Baumgartl J, Schirmacher P, Pasparakis M, Brüning JC (2008) Hepatic NF-κB essential modulator deficiency prevents obesity-induced insulin resistance but synergizes with high-fat feeding in tumorigenesis. Proc Natl Acad Sci USA 105:1297–1302PubMedCentralPubMedGoogle Scholar
  196. Xiao C, Ghosh S (2005) NF-kappaB, an evolutionarily conserved mediator of immune and inflammatory responses. Adv Exp Med Biol 560:41–45PubMedGoogle Scholar
  197. Yamamoto H, Kondo M, Nakamori S, Nagano H, Wakasa K, Sugita Y, Chang-De J, Kobayashi S, Damdinsuren B, Dono K, Umeshita K, Sekimoto M, Sakon M, Matsuura N, Monden M (2003) JTE-522, a cyclooxygenase-2 inhibitor, is an effective chemopreventive agent against rat experimental liver fibrosis. Gastroenterology 125:556–571PubMedGoogle Scholar
  198. Yildirim Y, Ozyilkan O, Bilezikci B, Akcali Z, Haberal M (2008) Lack of influence of cyclooxygenese-2 expression in hepatocellular carcinomas on patient survival. Asian Pac J Cancer Prev 9:295–298PubMedGoogle Scholar
  199. Yoshimura A, Naka T, Kubo M (2007) SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 7:454–465PubMedGoogle Scholar
  200. Yoysungnoen P, Wirachwong P, Bhattarakosol P, Niimi H, Patumraj S (2006) Effects of curcumin on tumor angiogenesis and biomarkers, COX-2 and VEGF, in hepatocellular carcinoma cell-implanted nude mice. Clin Hemorheol Microcirc 34:109–115PubMedGoogle Scholar
  201. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809PubMedGoogle Scholar
  202. Zhao X, Zhang JJ, Wang X, Bu XY, Lou YQ, Zhang GL (2008) Effect of berberine on hepatocyte proliferation, inducible nitric oxide synthase expression, cytochrome P450 2E1 and 1A2 activities in diethylnitrosamine- and phenobarbital-treated rats. Biomed Pharmacother 62:567–572PubMedGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences, School of PharmacyAmerican University of Health SciencesSignal HillUSA

Personalised recommendations