Advertisement

Pharmacology of the Capsaicin Receptor, Transient Receptor Potential Vanilloid Type-1 Ion Channel

  • Istvan NagyEmail author
  • Dominic Friston
  • João Sousa Valente
  • Jose  Vicente Torres Perez
  • Anna P. Andreou
Chapter
Part of the Progress in Drug Research book series (PDR, volume 68)

Abstract

The capsaicin receptor, transient receptor potential vanilloid type 1 ion channel (TRPV1), has been identified as a polymodal transducer molecule on a sub-set of primary sensory neurons which responds to various stimuli including noxious heat (>~42 °C), protons and vanilloids such as capsaicin, the hot ingredient of chilli peppers. Subsequently, TRPV1 has been found indispensable for the development of burning pain and reflex hyperactivity associated with inflammation of peripheral tissues and viscera, respectively. Therefore, TRPV1 is regarded as a major target for the development of novel agents for the control of pain and visceral hyperreflexia in inflammatory conditions. Initial efforts to introduce agents acting on TRPV1 into clinics have been hampered by unexpected side-effects due to wider than expected expression in various tissues, as well as by the complex pharmacology, of TRPV1. However, it is believed that better understanding of the pharmacological properties of TRPV1 and specific targeting of tissues may eventually lead to the development of clinically useful agents. In order to assist better understanding of TRPV1 pharmacology, here we are giving a comprehensive account on the activation and inactivation mechanisms and the structure–function relationship of TRPV1.

Keywords

Transient Receptor Potential Transient Receptor Potential Channel Primary Sensory Neuron Allyl Isothiocyanate Ankyrin Repeat Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahern GP (2003) Activation of TRPV1 by the satiety factor oleoylethanolamide. J Biol Chem 278:30429–30434PubMedGoogle Scholar
  2. Ahern GP, Brooks IM, Miyares RL, Wang XB (2005a) Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J Neurosci 25:5109–5116PubMedGoogle Scholar
  3. Ahern GP, Brooks IM, Miyares RL, Wang XB (2005b) Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J Neurosci: Official J Soc Neurosci 25:5109–5116Google Scholar
  4. Almasi R, Szoke E, Bolcskei K, Varga A, Riedl Z, Sandor Z, Szolcsanyi J, Petho G (2008) Actions of 3-methyl-N-oleoyldopamine, 4-methyl-N-oleoyldopamine and N-oleoylethanolamide on the rat TRPV1 receptor in vitro and in vivo. Life Sci 82:644–651PubMedGoogle Scholar
  5. Aneiros E, Cao L, Papakosta M, Stevens EB, Phillips S, Grimm C (2011) The biophysical and molecular basis of TRPV1 proton gating. EMBO J 30:994–1002PubMedCentralPubMedGoogle Scholar
  6. Appendino G, Daddario N, Minassi A, Moriello AS, de Petrocellis L, Di Marzo V (2005a) The taming of capsaicin. Reversal of the vanilloid activity of N-acylvanillamines by aromatic iodination. J Med Chem 48:4663–4669PubMedGoogle Scholar
  7. Appendino G, de Petrocellis L, Trevisani M, Minassi A, Daddario N, Moriello AS, Gazzieri D, Ligresti A, Campi B, Fontana G, Pinna C, Geppetti P, Di Marzo V (2005b) Development of the first ultra-potent “capsaicinoid” agonist at transient receptor potential vanilloid type 1 (TRPV1) channels and its therapeutic potential. J Pharmacol Exp Ther 312:561–570PubMedGoogle Scholar
  8. Appendino G, Harrison S, de Petrocellis L, Daddario N, Bianchi F, Schiano Moriello A, Trevisani M, Benvenuti F, Geppetti P, Di Marzo V (2003) Halogenation of a capsaicin analogue leads to novel vanilloid TRPV1 receptor antagonists. Br J Pharmacol 139: 1417–1424Google Scholar
  9. Arniges M, Fernandez-Fernandez JM, Albrecht N, Schaefer M, Valverde MA (2006) Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J Biol Chem 281:1580–1586PubMedGoogle Scholar
  10. Bang S, Yoo S, Yang TJ, Cho H, Hwang SW (2012) 17(R)-resolvin D1 specifically inhibits transient receptor potential ion channel vanilloid 3 leading to peripheral antinociception. Br J Pharmacol 165:683–692PubMedCentralPubMedGoogle Scholar
  11. Baumann TK, Martenson ME (2000) Extracellular protons both increase the activity and reduce the conductance of capsaicin- gated channels. J Neurosci 20:RC80Google Scholar
  12. Bevan S, Hothi S, Hughes G, James IF, Rang HP, Shah K, Walpole CS, Yeats JC (1992) Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin. Br J Pharmacol 107:544–552PubMedCentralPubMedGoogle Scholar
  13. Bhave G, Hu HJ, Glauner KS, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RWT (2003) Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc Natl Acad Sci USA 100:12480–12485PubMedCentralPubMedGoogle Scholar
  14. Bhave G, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RWT (2002) cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron 35:721–731PubMedGoogle Scholar
  15. Blednov YA, Harris RA (2009) Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol. Neuropharmacology 56:814–820PubMedCentralPubMedGoogle Scholar
  16. Bours MJ, Swennen EL, di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5’-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404PubMedGoogle Scholar
  17. Brand L, Berman E, Schwen R, Loomans M, Janusz J, Bohne R, Maddin C, Gardner J, Lahann T, Farmer R et al (1987) NE-19550: a novel, orally active anti-inflammatory analgesic. Drugs Exp Clin Res 13:259–265PubMedGoogle Scholar
  18. Brauchi S, Orta G, Mascayano C, Salazar M, Raddatz N, Urbina H, Rosenmann E, Gonzalez-Nilo F, Latorre R (2007) Dissection of the components for PIP2 activation and thermosensation in TRP channels. Proc Natl Acad Sci USA 104:10246–10251PubMedCentralPubMedGoogle Scholar
  19. Brauchi S, Orta G, Salazar M, Rosenmann E, Latorre R (2006) A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J Neurosci 26:4835–4840PubMedGoogle Scholar
  20. Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7:575–590PubMedGoogle Scholar
  21. Burnstock G (2009) Purinergic receptors and pain. Curr Pharm Des 15:1717–1735PubMedGoogle Scholar
  22. Burnstock G, Kennedy C (2011) P2X receptors in health and disease. Adv Pharmacol 61:333–372PubMedGoogle Scholar
  23. Carrier EJ, Kearn CS, Barkmeier AJ, Breese NM, Yang W, Nithipatikom K, Pfister SL, Campbell WB, Hillard CJ (2004) Cultured rat microglial cells synthesize the endocannabinoid 2-arachidonylglycerol, which increases proliferation via a CB2 receptor-dependent mechanism. Mol Pharmacol 65:999–1007PubMedGoogle Scholar
  24. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824PubMedGoogle Scholar
  25. Cavanaugh DJ, Chesler AT, Braz JM, Shah NM, Julius D, Basbaum AI (2011) Restriction of transient receptor potential vanilloid-1 to the peptidergic subset of primary afferent neurons follows its developmental downregulation in nonpeptidergic neurons. J Neurosci 31:10119–10127PubMedCentralPubMedGoogle Scholar
  26. Cesare P, Dekker LV, Sardini A, Parker PJ, McNaughton PA (1999) Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat. Neuron 23:617–624PubMedGoogle Scholar
  27. Cesare P, McNaughton P (1996) A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc Natl Acad Sci U S A 93:15435–15439PubMedCentralPubMedGoogle Scholar
  28. Chavez AE, Chiu CQ, Castillo PE (2010) TRPV1 activation by endogenous anandamide triggers postsynaptic long-term depression in dentate gyrus. Nat Neurosci 13:1511–1518PubMedCentralPubMedGoogle Scholar
  29. Cho W, Stahelin RV (2005) Membrane-protein interactions in cell signaling and membrane trafficking. Annu Rev Biophys Biomol Struct 34:119–151PubMedGoogle Scholar
  30. Cholewinski A, Burgess GM, Bevan S (1993) The role of calcium in capsaicin-induced desensitization in rat cultured dorsal root ganglion neurons. Neuroscience 55:1015–1023PubMedGoogle Scholar
  31. Chou MZ, Mtui T, Gao YD, Kohler M, Middleton RE (2004) Resiniferatoxin binds to the capsaicin receptor (TRPV1) near the extracellular side of the S4 transmembrane domain. Biochemistry 43:2501–2511PubMedGoogle Scholar
  32. Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962PubMedGoogle Scholar
  33. Cortright DN, Szallasi A (2004) Biochemical pharmacology of the vanilloid receptor TRPV1. An update. Europ J Biochem/FEBS 271:1814–1819Google Scholar
  34. Cromer BA, McIntyre P (2008) Painful toxins acting at TRPV1. Toxicon 51:163–173PubMedGoogle Scholar
  35. Culotta E, Koshland DE Jr (1992) No news is good news. Science 258:1862–1865Google Scholar
  36. Decottignies A, Goffeau A (1997) Complete inventory of the yeast ABC proteins. Nat Genet 15:137–145PubMedGoogle Scholar
  37. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949PubMedGoogle Scholar
  38. Dhaka A, Uzzell V, Dubin AE, Mathur J, Petrus M, Bandell M, Patapoutian A (2009) TRPV1 is activated by both acidic and basic pH. J Neurosci 29:153–158PubMedCentralPubMedGoogle Scholar
  39. Di Marzo V, Blumberg PM, Szallasi A (2002) Endovanilloid signaling in pain. Curr Opin Neurobiol 12:372–379PubMedGoogle Scholar
  40. Di Marzo V, de Petrocellis L, Sepe N, Buono A (1996) Biosynthesis of anandamide and related acylethanolamides in mouse J774 macrophages and N18 neuroblastoma cells. Biochem J 316(Pt 3):977–984PubMedCentralPubMedGoogle Scholar
  41. Di Marzo V, Fontana A, Cadas H, Schinelli S, Cimino G, Schwartz JC, Piomelli D (1994) Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372:686–691PubMedGoogle Scholar
  42. Dietrich A, Kalwa H, Rost BR, Gudermann T (2005) The diacylgylcerol-sensitive TRPC3/6/7 subfamily of cation channels: functional characterization and physiological relevance. Pflugers Arch 451:72–80PubMedGoogle Scholar
  43. Dinitto JP, Cronin TC, Lambright DG (2003) Membrane recognition and targeting by lipid-binding domains. Sci STKE: Sig Transduct Knowl Environ 213:re16Google Scholar
  44. Docherty RJ, Yeats JC, Bevan S, Boddeke HW (1996) Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurones from adult rats. Pflugers Arch 431:828–837PubMedGoogle Scholar
  45. Dray A (1992) Neuropharmacological mechanisms of capsaicin and related substances. Biochem Pharmacol 44:611–615PubMedGoogle Scholar
  46. Eisenach JC, Hood DD, Curry R (2002) Preliminary efficacy assessment of intrathecal injection of an American formulation of adenosine in humans. Anesthesiology 96:29–34PubMedGoogle Scholar
  47. el Kouhen R, Surowy CS, Bianchi BR, Neelands TR, McDonald HA, Niforatos W, Gomtsyan A, Lee CH, Honore P, Sullivan JP, Jarvis MF, Faltynek CR (2005) A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel and selective transient receptor potential type V1 receptor antagonist, blocks channel activation by vanilloids, heat, and acid. J Pharmacol Exp Ther 314:400–409PubMedGoogle Scholar
  48. Erler I, Hirnet D, Wissenbach U, Flockerzi V, Niemeyer BA (2004) Ca2+-selective transient receptor potential V channel architecture and function require a specific ankyrin repeat. J Biol Chem 279:34456–34463PubMedGoogle Scholar
  49. Everaerts W, Gees M, Alpizar YA, Farre R, Leten C, Apetrei A, Dewachter I, van Leuven F, Vennekens R, de Ridder D, Nilius B, Voets T, Talavera K (2011) The capsaicin receptor TRPV1 is a crucial mediator of the noxious effects of mustard oil. Curr Biol 21:316–321PubMedGoogle Scholar
  50. Fajardo O, Meseguer V, Belmonte C, Viana F (2008) TRPA1 channels mediate cold temperature sensing in mammalian vagal sensory neurons: pharmacological and genetic evidence. J Neurosci 28:7863–7875PubMedGoogle Scholar
  51. Faussone-Pellegrini MS, Taddei A, Bizzoco E, Lazzeri M, Vannucchi MG, Bechi P (2005) Distribution of the vanilloid (capsaicin) receptor type 1 in the human stomach. Histochem Cell Biol 124:61–68PubMedGoogle Scholar
  52. Fernandes ES, Fernandes MA, Keeble JE (2012) The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol 166:510–521PubMedCentralPubMedGoogle Scholar
  53. Fischer MJ, Btesh J, McNaughton PA (2013) Disrupting sensitization of transient receptor potential vanilloid subtype 1 inhibits inflammatory hyperalgesia. J Neurosci 33:7407–7414PubMedGoogle Scholar
  54. Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodriguez de Fonseca F, Rosengarth A, Luecke H, di Giacomo B, Tarzia G, Piomelli D (2003) Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425:90–93Google Scholar
  55. Fujiwake H, Suzuki T, Oka S, Iwai K (1980) Enzymatic formation of capsaicinoid from vanillylamine and iso-type fatty acids by cell-free extracts of Capsicum annuum var. annuum cv. Karayatsubus. Agric Biol Chem 44:2907–2912Google Scholar
  56. Garcia-Martinez C, Morenilla-Palao C, Planells-Cases R, Merino JM, Ferrer-Montiel A (2000) Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. J Biol Chem 275:32552–32558PubMedGoogle Scholar
  57. Garcia-Sanz N, Fernandez-Carvajal A, Morenilla-Palao C, Planells-Cases R, Fajardo-Sanchez E, Fernandez-Ballester G, Ferrer-Montiel A (2004) Identification of a tetramerization domain in the C terminus of the vanilloid receptor. J Neurosci 24:5307–5314PubMedGoogle Scholar
  58. Garcia-Sanz N, Valente P, Gomis A, Fernandez-Carvajal A, Fernandez-Ballester G, Viana F, Belmonte C, Ferrer-Montiel A (2007) A role of the transient receptor potential domain of vanilloid receptor I in channel gating. J Neurosci 27:11641–11650PubMedGoogle Scholar
  59. Gau P, Poon J, Ufret-Vincenty C, Snelson CD, Gordon SE, Raible DW, Dhaka A (2013) The zebrafish ortholog of TRPV1 is required for heat-induced locomotion. J Neurosci 33:5249–5260Google Scholar
  60. Gavva NR, Bannon AW, Surapaneni S, Hovland DN Jr, Lehto SG, Gore A, Juan T, Deng H, Han B, Klionsky L, Kuang R, Le A, Tamir R, Wang J, Youngblood B, Zhu D, Norman MH, Magal E, Treanor JJ, Louis JC (2007) The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation. J Neurosci 27:3366–3374Google Scholar
  61. Gavva NR, Klionsky L, Qu Y, Shi L, Tamir R, Edenson S, Zhang TJ, Viswanadhan VN, Toth A, Pearce LV, Vanderah TW, Porreca F, Blumberg PM, Lile J, Sun Y, Wild K, Louis JC, Treanor JJ (2004) Molecular determinants of vanilloid sensitivity in TRPV1. J Biol Chem 279:20283–20295PubMedGoogle Scholar
  62. Gavva NR, Tamir R, Qu Y, Klionsky L, Zhang TJ, Immke D, Wang J, Zhu D, Vanderah TW, Porreca F, Doherty EM, Norman MH, Wild KD, Bannon AW, Louis JC, Treanor JJ (2005) AMG 9810 [(E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties. J Pharmacol Exp Ther 313:474–484PubMedGoogle Scholar
  63. Gees M, Alpizar YA, Boonen B, Sanchez A, Everaerts W, Segal A, Xue F, Janssens A, Owsianik G, Nilius B, Voets T, Talavera K (2013) Mechanisms of TRPV1 activation and sensitization by Allyl Isothiocyanate. Mol Pharmacol 84:325–334Google Scholar
  64. Glendinning JI, Simons YM, Youngentob L, Youngentob SL (2012) Fetal ethanol exposure attenuates aversive oral effects of TrpV1, but not TrpA1 agonists in rats. Exp Biol Med (Maywood) 237:236–240Google Scholar
  65. Gomtsyan A, Bayburt EK, Schmidt RG, Zheng GZ, Perner RJ, Didomenico S, Koenig JR, Turner S, Jinkerson T, Drizin I, Hannick SM, Macri BS, McDonald HA, Honore P, Wismer CT, Marsh KC, Wetter J, Stewart KD, Oie T, Jarvis MF, Surowy CS, Faltynek CR, Lee CH (2005) Novel transient receptor potential vanilloid 1 receptor antagonists for the treatment of pain: structure-activity relationships for ureas with quinoline, isoquinoline, quinazoline, phthalazine, quinoxaline, and cinnoline moieties. J Med Chem 48:744–752PubMedGoogle Scholar
  66. Goodfellow CE, Glass M (2009) Anandamide receptor signal transduction. Vitam Horm 81:79–110PubMedGoogle Scholar
  67. Goswami C, Dreger M, Jahnel R, Bogen O, Gillen C, Hucho F (2004) Identification and characterization of a Ca2+ -sensitive interaction of the vanilloid receptor TRPV1 with tubulin. J Neurochem 91:1092–1103PubMedGoogle Scholar
  68. Gram DX, Ahren B, Nagy I, Olsen UB, Brand CL, Sundler F, Tabanera R, Svendsen O, Carr RD, Santha P, Wierup N, Hansen AJ (2007) Capsaicin-sensitive sensory fibers in the islets of Langerhans contribute to defective insulin secretion in Zucker diabetic rat, an animal model for some aspects of human type 2 diabetes. Eur J Neurosci 25:213–223PubMedGoogle Scholar
  69. Grandl J, Kim SE, Uzzell V, Bursulaya B, Petrus M, Bandell M, Patapoutian A (2010) Temperature-induced opening of TRPV1 ion channel is stabilized by the pore domain. Nat Neurosci 13:708–714PubMedCentralPubMedGoogle Scholar
  70. Green BG, Hayes JE (2003) Capsaicin as a probe of the relationship between bitter taste and chemesthesis. Physiol Behav 79:811–821PubMedGoogle Scholar
  71. Grycova L, Lansky Z, Friedlova E, Obsilova V, Janouskova H, Obsil T, Teisinger J (2008) Ionic interactions are essential for TRPV1 C-terminus binding to calmodulin. Biochem Biophys Res Commun 375:680–683PubMedGoogle Scholar
  72. Gunthorpe MJ, Harries MH, Prinjha RK, Davis JB, Randall A (2000) Voltage- and time-dependent properties of the recombinant rat vanilloid receptor (rVR1). J Physiol 525(Pt 3):747–759PubMedCentralPubMedGoogle Scholar
  73. Hail N Jr (2003) Mechanisms of vanilloid-induced apoptosis. Apoptosis: Int J Program Cell Death 8:251–262Google Scholar
  74. Helgren FJ, Lynch MJ, Kirchmeyer FJ (1955) A taste panel study of the saccharin off-taste. J Am Pharm Assoc Am Pharm Assoc (Baltim) 44:353–355Google Scholar
  75. Hellwig N, Albrecht N, Harteneck C, Schultz G, Schaefer M (2005) Homo- and heteromeric assembly of TRPV channel subunits. J Cell Sci 118:917–928PubMedGoogle Scholar
  76. Hoffmann J, Supronsinchai W, Andreou AP, Summ O, Akerman S, Goadsby PJ (2012) Olvanil acts on transient receptor potential vanilloid channel 1 and cannabinoid receptors to modulate neuronal transmission in the trigeminovascular system. Pain 153:2226–2232PubMedGoogle Scholar
  77. Hőgyes E (1878a) Adatok a paprika (Capsicum annuum) élettani hatásához. Orvosi Hetilap 10/VGoogle Scholar
  78. Hőgyes E (1878b) Beitrage zur physiologischen Wirkung der Bestandtheile des Capiscum annuum (Spanischer Pfeffer). Archiv für Experimentelle Pathologie und Pharmakologie 9:117–130Google Scholar
  79. Holzer P (2008) The pharmacological challenge to tame the transient receptor potential vanilloid-1 (TRPV1) nocisensor. Br J Pharmacol 155:1145–1162PubMedCentralPubMedGoogle Scholar
  80. Holzer P (2011) Acid sensing by visceral afferent neurones. Acta Physiol (Oxf) 201:63–75Google Scholar
  81. Honore P, Wismer CT, Mikusa J, Zhu CZ, Zhong C, Gauvin DM, Gomtsyan A, el Kouhen R, Lee CH, Marsh K, Sullivan JP, Faltynek CR, Jarvis MF (2005) A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel transient receptor potential type V1 receptor antagonist, relieves pathophysiological pain associated with inflammation and tissue injury in rats. J Pharmacol Exp Ther 314:410–421PubMedGoogle Scholar
  82. Huang J, Zhang X, McNaughton PA (2006a) Inflammatory pain: the cellular basis of heat hyperalgesia. Curr Neuropharmacol 4:197–206PubMedCentralPubMedGoogle Scholar
  83. Huang J, Zhang X, McNaughton PA (2006b) Modulation of temperature-sensitive TRP channels. Semin Cell Dev Biol 17:638–645PubMedGoogle Scholar
  84. Huang RF, Huang SM, Lin BS, Hung CY, Lu HT (2002a) N-Acetylcysteine, vitamin C and vitamin E diminish homocysteine thiolactone-induced apoptosis in human promyeloid HL-60 cells. J Nutr 132:2151–2156PubMedGoogle Scholar
  85. Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, Tognetto M, Petros TJ, Krey JF, Chu CJ, Miller JD, Davies SN, Geppetti P, Walker JM, Di Marzo V (2002b) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA 99:8400–8405 Google Scholar
  86. Hung LW, Wang IX, Nikaido K, Liu PQ, Ames GF, Kim SH (1998) Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396:703–707PubMedGoogle Scholar
  87. Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, Jung J, Cho S, Min KH, Suh YG, Kim D, Oh U (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci USA 97:6155–6160Google Scholar
  88. Iida T, Moriyama T, Kobata K, Morita A, Murayama N, Hashizume S, Fushiki T, Yazawa S, Watanabe T, Tominaga M (2003) TRPV1 activation and induction of nociceptive response by a non-pungent capsaicin-like compound, capsiate. Neuropharmacology 44:958–967PubMedGoogle Scholar
  89. Izzo AA, Capasso R, Pinto L, di Carlo G, Mascolo N, Capasso F (2001) Effect of vanilloid drugs on gastrointestinal transit in mice. Br J Pharmacol 132:1411–1416PubMedCentralPubMedGoogle Scholar
  90. Jahnel R, Dreger M, Gillen C, Bender O, Kurreck J, Hucho F (2001) Biochemical characterization of the vanilloid receptor 1 expressed in a dorsal root ganglia derived cell line. Eur J Biochem 268:5489–5496PubMedGoogle Scholar
  91. Jancsó-Gábor A, Szolcsányi J, Jancsó N (1970) Irreversible impairment of thermoregulation induced by capsaicin and similar pungent substances in rats and guinea-pigs. J Physiol 206:495–507PubMedCentralPubMedGoogle Scholar
  92. Jancsó G, Dux M, Oszlacs O, Santha P (2008) Activation of the transient receptor potential vanilloid-1 (TRPV1) channel opens the gate for pain relief. Br J Pharmacol 155:1139–1141PubMedCentralPubMedGoogle Scholar
  93. Jancsó G, Király E, Jancsó-Gábor A (1977) Pharmacologically induced selective degeneration of chemosensitive primary sensory neurones. Nature 270:741–743PubMedGoogle Scholar
  94. Jancsó M, Jancsóné M (1949) Érzőidegvégződések desensibilizálása Kísérletes. Orvostudomány 2:15Google Scholar
  95. Jancsó N, Jancsó-Gábor A, Szolcsányi J (1967) Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br J Pharmacol Chemother 31:138–151PubMedCentralPubMedGoogle Scholar
  96. Jansson ET, Trkulja CL, Ahemaiti A, Millingen M, Jeffries GD, Jardemark K, Orwar O (2013) Effect of cholesterol depletion on the pore dilation of TRPV1. Mol Pain 9:1PubMedCentralPubMedGoogle Scholar
  97. Jara-Oseguera A, Simon SA, Rosenbaum T (2008) TRPV1: on the road to pain relief. Curr Mol Pharmacol 1:255–269PubMedCentralPubMedGoogle Scholar
  98. Jeske NA, Patwardhan AM, Gamper N, Price TJ, Akopian AN, Hargreaves KM (2006) Cannabinoid WIN 55,212-2 regulates TRPV1 phosphorylation in sensory neurons. J Biol Chem 281:32879–32890PubMedCentralPubMedGoogle Scholar
  99. Jeske NA, Patwardhan AM, Ruparel NB, Akopian AN, Shapiro MS, Henry MA (2009) A-kinase anchoring protein 150 controls protein kinase C-mediated phosphorylation and sensitization of TRPV1. Pain 146:301–307PubMedCentralPubMedGoogle Scholar
  100. Jin X, Touhey J, Gaudet R (2006) Structure of the N-terminal ankyrin repeat domain of the TRPV2 ion channel. J Biol Chem 281:25006–25010PubMedGoogle Scholar
  101. Jordt SE, Julius D (2002) Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108:421–430PubMedGoogle Scholar
  102. Jordt SE, Tominaga M, Julius D (2000) Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc Natl Acad Sci USA 97:8134–8139PubMedCentralPubMedGoogle Scholar
  103. Jung J, Lee SY, Hwang SW, Cho H, Shin J, Kang YS, Kim S, Oh U (2002) Agonist recognition sites in the cytosolic tails of vanilloid receptor 1. J Biol Chem 277:44448–44454PubMedGoogle Scholar
  104. Jung J, Shin JS, Lee SY, Hwang SW, Koo J, Cho H, Oh U (2004) Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding. J Biol Chem 279:7048–7054PubMedGoogle Scholar
  105. Kass GE, Orrenius S (1999) Calcium signaling and cytotoxicity. Environ Health Perspect 107(Suppl 1):25–35PubMedCentralPubMedGoogle Scholar
  106. Kato S, Aihara E, Nakamura A, Xin H, Matsui H, Kohama K, Takeuchi K (2003) Expression of vanilloid receptors in rat gastric epithelial cells: role in cellular protection. Biochem Pharmacol 66:1115–1121PubMedGoogle Scholar
  107. Kauer JA, Gibson HE (2009) Hot flash: TRPV channels in the brain. Trends Neurosci 32:215–224PubMedGoogle Scholar
  108. Kim AY, Tang Z, Liu Q, Patel KN, Maag D, Geng Y, Dong X (2008) Pirt, a phosphoinositide-binding protein, functions as a regulatory subunit of TRPV1. Cell 133:475–485PubMedCentralPubMedGoogle Scholar
  109. Knotkova H, Pappagallo M, Szallasi A (2008) Capsaicin (TRPV1 Agonist) therapy for pain relief: farewell or revival? Clin J Pain 24:142–154PubMedGoogle Scholar
  110. Koplas PA, Rosenberg RL, Oxford GS (1997) The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons. J Neurosci: Official J Soc Neurosci 17:3525–3537Google Scholar
  111. Kwak J, Wang MH, Hwang SW, Kim TY, Lee SY, Oh U (2000) Intracellular ATP increases capsaicin-activated channel activity by interacting with nucleotide-binding domains. J Neurosci 20:8298–8304PubMedGoogle Scholar
  112. Lainez S, Valente P, Ontoria-Oviedo I, Estevez-Herrera J, Camprubi-Robles M, Ferrer-Montiel A, Planells-Cases R (2010) GABAA receptor associated protein (GABARAP) modulates TRPV1 expression and channel function and desensitization. FASEB J: Official Publ Fed Am Soc Exp Biol 24:1958–1970Google Scholar
  113. Latorre R, Brauchi S, Orta G, Zaelzer C, Vargas G (2007) ThermoTRP channels as modular proteins with allosteric gating. Cell Calcium 42:427–438PubMedGoogle Scholar
  114. Lau SY, Procko E, Gaudet R (2012) Distinct properties of Ca2+-calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel. J Gen Physiol 140:541–555PubMedCentralPubMedGoogle Scholar
  115. Lee JH, Lee Y, Ryu H, Kang DW, Lee J, Lazar J, Pearce LV, Pavlyukovets VA, Blumberg PM, Choi S (2011) Structural insights into transient receptor potential vanilloid type 1 (TRPV1) from homology modeling, flexible docking, and mutational studies. J Comput Aided Mol Des 25:317–327PubMedCentralPubMedGoogle Scholar
  116. Lemmon MA (2003) Phosphoinositide recognition domains. Traffic 4:201–213PubMedGoogle Scholar
  117. Levine JD, Lam D, Taiwo YO, Donatoni P, Goetzl EJ (1986) Hyperalgesic properties of 15-lipoxygenase products of arachidonic acid. Proc Natl Acad Sci USA 83:5331–5334PubMedCentralPubMedGoogle Scholar
  118. Levine JD, Taiwo YO (1990) Hyperalgesic pain: a review. Anesth prog 37:133–135PubMedCentralPubMedGoogle Scholar
  119. Lim J, Green BG (2007) The psychophysical relationship between bitter taste and burning sensation: evidence of qualitative similarity. Chem Senses 32:31–39PubMedGoogle Scholar
  120. Lishko PV, Procko E, Jin X, Phelps CB, Gaudet R (2007) The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54:905–918PubMedGoogle Scholar
  121. Liu L, Simon SA (1996) Capsaicin-induced currents with distinct desensitization and Ca2+ dependence in rat trigeminal ganglion cells. J Neurophysiol 75:1503–1514PubMedGoogle Scholar
  122. Liu B, Hui K, Qin F (2003) Thermodynamics of heat activation of single capsaicin ion channels VR1. Biophys J 85:2988–3006PubMedCentralPubMedGoogle Scholar
  123. Liu B, Zhang C, Qin F (2005) Functional recovery from desensitization of vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4,5-bisphosphate. J Neurosci: Official J Soc Neurosci 25:4835–4843Google Scholar
  124. Liu J, Wang L, Harvey-White J, Huang BX, Kim HY, Luquet S, Palmiter RD, Krystal G, Rai R, Mahadevan A, Razdan RK, Kunos G (2008) Multiple pathways involved in the biosynthesis of anandamide. Neuropharmacology 54:1–7PubMedCentralPubMedGoogle Scholar
  125. Liu J, Wang L, Harvey-White J, Osei-Hyiaman D, Razdan R, Gong Q, Chan AC, Zhou Z, Huang BX, Kim HY, Kunos G (2006a) A biosynthetic pathway for anandamide. Proc Natl Acad Sci U S A 103:13345–13350PubMedCentralPubMedGoogle Scholar
  126. Liu M, Huang W, Wu D, Priestley JV (2006b) TRPV1, but not P2X, requires cholesterol for its function and membrane expression in rat nociceptors. Europ J Neurosci 24:1–6Google Scholar
  127. Lopshire JC, Nicol GD (1998) The cAMP transduction cascade mediates the prostaglandin E2 enhancement of the capsaicin-elicited current in rat sensory neurons: whole-cell and single-channel studies. J Neurosci 18:6081–6092PubMedGoogle Scholar
  128. Lukacs V, Thyagarajan B, Varnai P, Balla A, Balla T, Rohacs T (2007) Dual regulation of TRPV1 by phosphoinositides. J Neurosci: Official J Soc Neurosci 27:7070–7080Google Scholar
  129. Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, Patapoutian A (2005) The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol 15:929–934PubMedGoogle Scholar
  130. Mahmud A, Santha P, Paule CC, Nagy I (2009) Cannabinoid 1 receptor activation inhibits transient receptor potential vanilloid type 1 receptor-mediated cationic influx into rat cultured primary sensory neurons. Neuroscience 162:1202–1211PubMedGoogle Scholar
  131. Maihofner C, Heskamp ML (2013) Prospective, non-interventional study on the tolerability and analgesic effectiveness over 12 weeks after a single application of capsaicin 8 % cutaneous patch in 1044 patients with peripheral neuropathic pain: first results of the QUEPP study. Curr Med Res Opin 29:673–683PubMedGoogle Scholar
  132. Mandadi S, Numazaki M, Tominaga M, Bhat MB, Armati PJ, Roufogalis BD (2004) Activation of protein kinase C reverses capsaicin-induced calcium-dependent desensitization of TRPV1 ion channels. Cell Calcium 35:471–478PubMedGoogle Scholar
  133. Mandadi S, Roufogalis BD (2008) ThermoTRP channels in nociceptors: taking a lead from capsaicin receptor TRPV1. Curr Neuropharmacol 6:21–38PubMedCentralPubMedGoogle Scholar
  134. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564PubMedGoogle Scholar
  135. Matta JA, Ahern GP (2011) TRPV1 and synaptic transmission. Curr Pharm Biotechnol 12:95–101PubMedGoogle Scholar
  136. McCleverty CJ, Koesema E, Patapoutian A, Lesley SA, Kreusch A (2006) Crystal structure of the human TRPV2 channel ankyrin repeat domain. Protein Sci 15:2201–2206PubMedCentralPubMedGoogle Scholar
  137. McLatchie LM, Bevan S (2001) The effects of pH on the interaction between capsaicin and the vanilloid receptor in rat dorsal root ganglia neurons. Br J Pharmacol 132:899–908PubMedCentralPubMedGoogle Scholar
  138. McMahon SB, Lewin G, Bloom SR (1991) The consequences of long-term topical capsaicin application in the rat. Pain 44:301–310PubMedGoogle Scholar
  139. McNamara FN, Randall A, Gunthorpe MJ (2005) Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br J Pharmacol 144:781–790PubMedCentralPubMedGoogle Scholar
  140. Mercado J, Gordon-Shaag A, Zagotta WN, Gordon SE (2010) Ca2+-dependent desensitization of TRPV2 channels is mediated by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J Neurosci: Official J Soc Neurosci 30:13338–13347Google Scholar
  141. Mohapatra DP, Nau C (2003) Desensitization of capsaicin-activated currents in the vanilloid receptor TRPV1 is decreased by the cyclic AMP-dependent protein kinase pathway. J Biol Chem 278:50080–50090PubMedGoogle Scholar
  142. Mohapatra DP, Nau C (2005) Regulation of Ca2+-dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J Biol Chem 280:13424–13432PubMedGoogle Scholar
  143. Mohapatra DP, Wang SY, Wang GK, Nau C (2003) A tyrosine residue in TM6 of the Vanilloid Receptor TRPV1 involved in desensitization and calcium permeability of capsaicin-activated currents. Mol Cell Neurosci 23:314–324PubMedGoogle Scholar
  144. Morales-Lazaro SL, Simon SA, Rosenbaum T (2013) The role of endogenous molecules in modulating pain through transient receptor potential vanilloid 1 (TRPV1). J Physiol 591:3109–3121PubMedGoogle Scholar
  145. Morenilla-Palao C, Planells-Cases R, Garcia-Sanz N, Ferrer-Montiel A (2004) Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J Biol Chem 279:25665–25672PubMedGoogle Scholar
  146. Moriyama T, Higashi T, Togashi K, Iida T, Segi E, Sugimoto Y, Tominaga T, Narumiya S, Tominaga M (2005a) Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain 1:3PubMedCentralPubMedGoogle Scholar
  147. Moriyama T, Higashi T, Togashi K, Iida T, Segi E, Sugimoto Y, Tominaga T, Narumiya S, Tominaga M (2005b) Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain 1:3PubMedCentralPubMedGoogle Scholar
  148. Moriyama T, Iida T, Kobayashi K, Higashi T, Fukuoka T, Tsumura H, Leon C, Suzuki N, Inoue K, Gachet C, Noguchi K, Tominaga M (2003) Possible involvement of P2Y2 metabotropic receptors in ATP-induced transient receptor potential vanilloid receptor 1-mediated thermal hypersensitivity. J Neurosci: Official J Soc Neurosci 23:6058–6062Google Scholar
  149. Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13:1435–1448PubMedCentralPubMedGoogle Scholar
  150. Movahed P, Jonsson BA, Birnir B, Wingstrand JA, Jorgensen TD, Ermund A, Sterner O, Zygmunt PM, Hogestatt ED (2005) Endogenous unsaturated C18 N-acylethanolamines are vanilloid receptor (TRPV1) agonists. J Biol Chem 280:38496–38504PubMedGoogle Scholar
  151. Nagy B, Fedonidis C, Photiou A, Wahba J, Paule CC, Ma D, Buluwela L, Nagy I (2009) Capsaicin-sensitive primary sensory neurons in the mouse express N-Acyl phosphatidylethanolamine phospholipase D. Neuroscience 161:572–577PubMedCentralPubMedGoogle Scholar
  152. Nagy I (2004) Sensory processing: primary afferent neurons/DRG. In: Maze EA (ed) Anesthetic pharmacology: physiologic principles and clinical practice. Churchill Livingstone, PhiladelphiaGoogle Scholar
  153. Nagy I, Santha P, Jancso G, Urban L (2004) The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. Eur J Pharmacol 500:351–369PubMedGoogle Scholar
  154. Nieto-Posadas A, Picazo-Juarez G, Llorente I, Jara-Oseguera A, Morales-Lazaro S, Escalante-Alcalde D, Islas LD, Rosenbaum T (2012) Lysophosphatidic acid directly activates TRPV1 through a C-terminal binding site. Nat Chem Biol 8:78–85Google Scholar
  155. Nilius B, Appendino G (2011) Tasty and healthy TR(i)Ps. The human quest for culinary pungency. EMBO Rep 12:1094–1101PubMedCentralPubMedGoogle Scholar
  156. Nilius B, Voets T (2005) TRP channels: a TR(I)P through a world of multifunctional cation channels. Pflugers Arch 451:1–10PubMedGoogle Scholar
  157. Noguchi K, Herr D, Mutoh T, Chun J (2009) Lysophosphatidic acid (LPA) and its receptors. Curr Opin Pharmacol 9:15–23PubMedGoogle Scholar
  158. Nolano M, Simone DA, Wendelschafer-Crabb G, Johnson T, Hazen E, Kennedy WR (1999) Topical capsaicin in humans: parallel loss of epidermal nerve fibers and pain sensation. Pain 81:135–145PubMedGoogle Scholar
  159. Noto C, Pappagallo M, Szallasi A (2009) NGX-4010, a high-concentration capsaicin dermal patch for lasting relief of peripheral neuropathic pain. Curr Opin Investig Drugs 10:702–710PubMedGoogle Scholar
  160. Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H, Tominaga M (2003) Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci USA 100:8002–8006PubMedCentralPubMedGoogle Scholar
  161. Numazaki M, Tominaga T, Toyooka H, Tominaga M (2002) Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two target serine residues. J Biol Chem 277:13375–13378PubMedGoogle Scholar
  162. Oh U, Hwang SW, Kim D (1996) Capsaicin activates a nonselective cation channel in cultured neonatal rat dorsal root ganglion neurons. J Neurosci 16:1659–1667PubMedGoogle Scholar
  163. Ohta T, Imagawa T, Ito S (2007) Novel agonistic action of mustard oil on recombinant and endogenous porcine transient receptor potential V1 (pTRPV1) channels. Biochem Pharmacol 73:1646–1656PubMedGoogle Scholar
  164. Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N (2004) Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem 279:5298–5305PubMedGoogle Scholar
  165. Olah Z, Szabo T, Karai L, Hough C, Fields RD, Caudle RM, Blumberg PM, Iadarola MJ (2001) Ligand-induced dynamic membrane changes and cell deletion conferred by vanilloid receptor 1. J Biol Chem 276:11021–11030PubMedGoogle Scholar
  166. Papazian DM, Timpe LC, Jan YN, Jan LY (1991) Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature 349:305–310PubMedGoogle Scholar
  167. Park CK, Xu ZZ, Liu T, Lu N, Serhan CN, Ji RR (2011) Resolvin D2 is a potent endogenous inhibitor for transient receptor potential subtype V1/A1, inflammatory pain, and spinal cord synaptic plasticity in mice: distinct roles of resolvin D1, D2, and E1. J Neurosci 31:18433–18438PubMedCentralPubMedGoogle Scholar
  168. Perkins MN, Campbell EA (1992) Capsazepine reversal of the antinociceptive action of capsaicin in vivo. Br J Pharmacol 107:329–333PubMedCentralPubMedGoogle Scholar
  169. Peters JH, McDougall SJ, Fawley JA, Andresen MC (2011) TRPV1 marks synaptic segregation of multiple convergent afferents at the rat medial solitary tract nucleus. PLoS ONE 6:e25015PubMedCentralPubMedGoogle Scholar
  170. Phelps CB, Wang RR, Choo SS, Gaudet R (2010) Differential regulation of TRPV1, TRPV3, and TRPV4 sensitivity through a conserved binding site on the ankyrin repeat domain. J Biol Chem 285:731–740PubMedCentralPubMedGoogle Scholar
  171. Phillips E, Reeve A, Bevan S, McIntyre P (2004) Identification of species-specific determinants of the action of the antagonist capsazepine and the agonist PPAHV on TRPV1. J Biol Chem 279:17165–17172PubMedGoogle Scholar
  172. Picazo-Juarez G, Romero-Suarez S, Nieto-Posadas A, Llorente I, Jara-Oseguera A, Briggs M, McIntosh TJ, Simon SA, Ladron-De-guevara E, Islas LD, Rosenbaum T (2011) Identification of a binding motif in the S5 helix that confers cholesterol sensitivity to the TRPV1 ion channel. J Biol Chem 286:24966–24976PubMedCentralPubMedGoogle Scholar
  173. Piper AS, Yeats JC, Bevan S, Docherty RJ (1999) A study of the voltage dependence of capsaicin-activated membrane currents in rat sensory neurones before and after acute desensitization. J Physiol 518(Pt 3):721–733PubMedCentralPubMedGoogle Scholar
  174. Por ED, Bierbower SM, Berg KA, Gomez R, Akopian AN, Wetsel WC, Jeske NA (2012) beta-Arrestin-2 desensitizes the transient receptor potential vanilloid 1 (TRPV1) channel. J Biol Chem 287:37552–37563PubMedCentralPubMedGoogle Scholar
  175. Pórszász J, Jancsó N (1959) Studies on the action potentials of sensory nerves in animals desensitized with capsaicine. Acta Physiol Acad Sci Hung 16:299–306PubMedGoogle Scholar
  176. Premkumar LS, Ahern GP (2000) Induction of vanilloid receptor channel activity by protein kinase C. Nature 408:985–990PubMedGoogle Scholar
  177. Premkumar LS, Qi ZH, van Buren J, Raisinghani M (2004) Enhancement of potency and efficacy of NADA by PKC-mediated phosphorylation of vanilloid receptor. J Neurophysiol 91:1442–1449PubMedGoogle Scholar
  178. Prescott ED, Julius D (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300:1284–1288PubMedGoogle Scholar
  179. Preti D, Szallasi A, Patacchini R (2012) TRP channels as therapeutic targets in airway disorders: a patent review. Expert Opin Ther Pat 22:663–695PubMedGoogle Scholar
  180. Puntambekar P, van Buren J, Raisinghani M, Premkumar LS, Ramkumar V (2004) Direct interaction of adenosine with the TRPV1 channel protein. J Neurosci: Official J Soc Neurosci 24:3663–3671Google Scholar
  181. Raisinghani M, Pabbidi RM, Premkumar LS (2005) Activation of transient receptor potential vanilloid 1 (TRPV1) by resiniferatoxin. J Physiol 567:771–786PubMedCentralPubMedGoogle Scholar
  182. Rathee PK, Distler C, Obreja O, Neuhuber W, Wang GK, Wang SY, Nau C, Kress M (2002) PKA/AKAP/VR-1 module: a common link of Gs-mediated signaling to thermal hyperalgesia. J Neurosci: Official J Soc Neurosci 22:4740–4745Google Scholar
  183. Riera CE, Vogel H, Simon SA, le Coutre J (2007) Artificial sweeteners and salts producing a metallic taste sensation activate TRPV1 receptors. Am J Physiol Regul Integr Comp Physiol 293:R626–R634PubMedGoogle Scholar
  184. Robbins N, Koch SE, Rubinstein J (2013) Targeting TRPV1 and TRPV2 for potential therapeutic interventions in cardiovascular disease. Transl Res: J Lab Clin Med 161:469–476Google Scholar
  185. Roberts LA, Connor M (2006) TRPV1 antagonists as a potential treatment for hyperalgesia. Recent Pat CNS Drug Discov 1:65–76PubMedGoogle Scholar
  186. Rosenbaum T, Gordon-Shaag A, Munari M, Gordon SE (2004) Ca2+/calmodulin modulates TRPV1 activation by capsaicin. J Gen Physiol 123:53–62PubMedCentralPubMedGoogle Scholar
  187. Rutter AR, Ma QP, Leveridge M, Bonnert TP (2005) Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia. NeuroReport 16:1735–1739PubMedGoogle Scholar
  188. Ryu S, Liu B, Yao J, Fu Q, Qin F (2007) Uncoupling proton activation of vanilloid receptor TRPV1. J Neurosci 27:12797–12807PubMedGoogle Scholar
  189. Saito S, Shingai R (2006) Evolution of thermoTRP ion channel homologs in vertebrates. Physiol Genomics 27:219–230PubMedGoogle Scholar
  190. Salazar H, Jara-Oseguera A, Hernandez-Garcia E, Llorente I, Arias O II, Soriano-Garcia M, Islas LD, Rosenbaum T (2009) Structural determinants of gating in the TRPV1 channel. Nat Struct Mol Biol 16:704–710Google Scholar
  191. Salazar H, Llorente I, Jara-Oseguera A, Garcia-Villegas R, Munari M, Gordon SE, Islas LD, Rosenbaum T (2008) A single N-terminal cysteine in TRPV1 determines activation by pungent compounds from onion and garlic. Nat Neurosci 11:255–261PubMedGoogle Scholar
  192. Samuelsson B (1983) Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220:568–575PubMedGoogle Scholar
  193. Santha P, Jancso G (2003) Transganglionic transport of choleragenoid by capsaicin-sensitive C-fibre afferents to the substantia gelatinosa of the spinal dorsal horn after peripheral nerve section. Neuroscience 116:621–627PubMedGoogle Scholar
  194. Santha P, Oszlacs O, Dux M, Dobos I, Jancso G (2010) Inhibition of glucosylceramide synthase reversibly decreases the capsaicin-induced activation and TRPV1 expression of cultured dorsal root ganglion neurons. Pain 150:103–112PubMedGoogle Scholar
  195. Sanz-Salvador L, Andres-Borderia A, Ferrer-Montiel A, Planells-Cases R (2012) Agonist- and Ca2+-dependent desensitization of TRPV1 channel targets the receptor to lysosomes for degradation. J Biol Chem 287:19462–19471PubMedCentralPubMedGoogle Scholar
  196. Savidge J, Davis C, Shah K, Colley S, Phillips E, Ranasinghe S, Winter J, Kotsonis P, Rang H, McIntyre P (2002) Cloning and functional characterization of the guinea pig vanilloid receptor 1. Neuropharmacology 43:450–456PubMedGoogle Scholar
  197. Sawynok J, Liu XJ (2003) Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 69:313–340PubMedGoogle Scholar
  198. Schiffman SS, Suggs MS, Abou Donia MB, Erickson RP, Nagle HT (1995) Environmental pollutants alter taste responses in the gerbil. Pharmacol Biochem Behav 52:189–194Google Scholar
  199. Shin HJ, Gye MH, Chung KH, Yoo BS (2002) Activity of protein kinase C modulates the apoptosis induced by polychlorinated biphenyls in human leukemic HL-60 cells. Toxicol Lett 135:25–31PubMedGoogle Scholar
  200. Siemens J, Zhou S, Piskorowski R, Nikai T, Lumpkin EA, Basbaum AI, King D, Julius D (2006) Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature 444:208–212PubMedGoogle Scholar
  201. Simon GM, Cravatt BF (2008) Anandamide biosynthesis catalyzed by the phosphodiesterase GDE1 and detection of glycerophospho-N-acyl ethanolamine precursors in mouse brain. J Biol Chem 283:9341–9349PubMedCentralPubMedGoogle Scholar
  202. Simone DA, Baumann TK, Lamotte RH (1989) Dose-dependent pain and mechanical hyperalgesia in humans after intradermal injection of capsaicin. Pain 38:99–107PubMedGoogle Scholar
  203. Simone DA, Nolano M, Johnson T, Wendelschafer-Crabb G, Kennedy WR (1998) Intradermal injection of capsaicin in humans produces degeneration and subsequent reinnervation of epidermal nerve fibers: correlation with sensory function. J Neurosci: Official J Soc Neurosci 18:8947–8959Google Scholar
  204. Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L, Egerton J, Charles KJ, Smart D, Randall AD, Anand P, Davis JB (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418:186–190PubMedGoogle Scholar
  205. Southall MD, Li T, Gharibova LS, Pei Y, Nicol GD, Travers JB (2003) Activation of epidermal vanilloid receptor-1 induces release of proinflammatory mediators in human keratinocytes. J Pharmacol Exp ther 304:217–222PubMedGoogle Scholar
  206. Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE (2006) Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 128:509–522PubMedCentralPubMedGoogle Scholar
  207. Storti B, Bizzarri R, Cardarelli F, Beltram F (2012) Intact microtubules preserve transient receptor potential vanilloid 1 (TRPV1) functionality through receptor binding. J Biol Chem 287:7803–7811PubMedCentralPubMedGoogle Scholar
  208. Studer M, McNaughton PA (2010) Modulation of single-channel properties of TRPV1 by phosphorylation. J Physiol 588:3743–3756PubMedCentralPubMedGoogle Scholar
  209. Stuhmer W, Conti F, Suzuki H, Wang XD, Noda M, Yahagi N, Kubo H, Numa S (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603PubMedGoogle Scholar
  210. Sun Q, Tafesse L, Islam K, Zhou X, Victory SF, Zhang C, Hachicha M, Schmid LA, Patel A, Rotshteyn Y, Valenzano KJ, Kyle DJ (2003) 4-(2-pyridyl)piperazine-1-carboxamides: potent vanilloid receptor 1 antagonists. Bioorg Med Chem Lett 13:3611–3616PubMedGoogle Scholar
  211. Sun YX, Tsuboi K, Okamoto Y, Tonai T, Murakami M, Kudo I, Ueda N (2004) Biosynthesis of anandamide and N-palmitoylethanolamine by sequential actions of phospholipase A2 and lysophospholipase D. Biochem J 380:749–756PubMedCentralPubMedGoogle Scholar
  212. Swanson DM, Dubin AE, Shah C, Nasser N, Chang L, Dax SL, Jetter M, Breitenbucher JG, Liu C, Mazur C, Lord B, Gonzales L, Hoey K, Rizzolio M, Bogenstaetter M, Codd EE, Lee DH, Zhang SP, Chaplan SR, Carruthers NI (2005) Identification and biological evaluation of 4-(3-trifluoromethylpyridin-2-yl)piperazine-1-carboxylic acid (5-trifluoromethylpyridin-2-yl)amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist. J Med Chem 48:1857–1872PubMedGoogle Scholar
  213. Szallasi A, Blumberg PM (1990) Specific binding of resiniferatoxin, an ultrapotent capsaicin analog, by dorsal root ganglion membranes. Brain Res 524:106–111PubMedGoogle Scholar
  214. Szallasi A, Goso C, Blumberg PM, Manzini S (1993) Competitive inhibition by capsazepine of [3H]resiniferatoxin binding to central (spinal cord and dorsal root ganglia) and peripheral (urinary bladder and airways) vanilloid (capsaicin) receptors in the rat. J Pharmacol Exp Ther 267:728–733PubMedGoogle Scholar
  215. Szallasi A, Sheta M (2012) Targeting TRPV1 for pain relief: limits, losers and laurels. Expert Opin Investig Drugs 21:1351–1369PubMedGoogle Scholar
  216. Szoke E, Borzsei R, Toth DM, Lengl O, Helyes Z, Sandor Z, Szolcsanyi J (2010) Effect of lipid raft disruption on TRPV1 receptor activation of trigeminal sensory neurons and transfected cell line. Eur J Pharmacol 628:67–74PubMedGoogle Scholar
  217. Szolcsányi J (2004) Forty years in capsaicin research for sensory pharmacology and physiology. Neuropeptides 38:377–384PubMedGoogle Scholar
  218. Tafesse L, Sun Q, Schmid L, Valenzano KJ, Rotshteyn Y, Su X, Kyle DJ (2004) Synthesis and evaluation of pyridazinylpiperazines as vanilloid receptor 1 antagonists. Bioorg Med Chem Lett 14:5513–5519PubMedGoogle Scholar
  219. Taiwo YO, Bjerknes LK, Goetzl EJ, Levine JD (1989) Mediation of primary afferent peripheral hyperalgesia by the cAMP second messenger system. Neuroscience 32:577–580PubMedGoogle Scholar
  220. Taiwo YO, Levine JD (1990) Effects of cyclooxygenase products of arachidonic acid metabolism on cutaneous nociceptive threshold in the rat. Brain Res 537:372–374PubMedGoogle Scholar
  221. Tender GC, Walbridge S, Olah Z, Karai L, Iadarola M, Oldfield EH, Lonser RR (2005) Selective ablation of nociceptive neurons for elimination of hyperalgesia and neurogenic inflammation. J Neurosurg 102:522–525PubMedGoogle Scholar
  222. Thresh JC (1876a) Capsaicin, the active principle in Capsicum fruits. The Analyst 1:148–149Google Scholar
  223. Thresh JC (1876b) Isolation of capsaicin. Pharm J Trans 3:941–947Google Scholar
  224. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543PubMedGoogle Scholar
  225. Tominaga M, Wada M, Masu M (2001) Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci USA 98:6951–6956PubMedCentralPubMedGoogle Scholar
  226. Touska F, Marsakova L, Teisinger J, Vlachova V (2011) A “cute” desensitization of TRPV1. Curr Pharm Biotechnol 12:122–129PubMedGoogle Scholar
  227. Trevisani M, Smart D, Gunthorpe MJ, Tognetto M, Barbieri M, Campi B, Amadesi S, Gray J, Jerman JC, Brough SJ, Owen D, Smith GD, Randall AD, Harrison S, Bianchi A, Davis JB, Geppetti P (2002) Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nat Neurosci 5:546–551PubMedGoogle Scholar
  228. Ueda H, Matsunaga H, Olaposi OI, Nagai J (2013a) Lysophosphatidic acid: chemical signature of neuropathic pain. Biochim Biophys Acta 1831:61–73PubMedGoogle Scholar
  229. Ueda N, Tsuboi K, Uyama T (2013b) Metabolism of endocannabinoids and related N-acylethanolamines: canonical and alternative pathways. FEBS J 280:1874–1894PubMedGoogle Scholar
  230. Valente P, Garcia-Sanz N, Gomis A, Fernandez-Carvajal A, Fernandez-Ballester G, Viana F, Belmonte C, Ferrer-Montiel A (2008) Identification of molecular determinants of channel gating in the transient receptor potential box of vanilloid receptor I. FASEB J 22:3298–3309PubMedGoogle Scholar
  231. van der Stelt M, Di Marzo V (2005) Anandamide as an intracellular messenger regulating ion channel activity. Prostaglandins Other Lipid Mediat 77:111–122PubMedGoogle Scholar
  232. van der Stelt M, Trevisani M, Vellani V, de Petrocellis L, Schiano Moriello A, Campi B, Mcnaughton P, Geppetti P, Di Marzo V (2005) Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels. EMBO J 24:3026–3037Google Scholar
  233. Varga A, Jenes A, Marczylo TH, Sousa-Valente J, Chen J, Austin J, Selvarajah S, Piscitelli F, Andreou AP, Taylor AH, Kyle F, Yaqoob M, Brain S, White JP, Csernoch L, Di Marzo V, Buluwela L, Nagy I (2013) Anandamide produced by Ca2+-insensitive enzymes induces excitation in primary sensory neurons. Pflugers Archiv: Europ J Physiol In Press. PMID: 24114173Google Scholar
  234. Veldhuis NA, Lew MJ, Abogadie FC, Poole DP, Jennings EA, Ivanusic JJ, Eilers H, Bunnett NW, McIntyre P (2012) N-glycosylation determines ionic permeability and desensitization of the TRPV1 capsaicin receptor. J Biol Chem 287:21765–21772PubMedCentralPubMedGoogle Scholar
  235. Vellani V, Mapplebeck S, Moriondo A, Davis JB, McNaughton PA (2001) Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J Physiol 534:813–825PubMedCentralPubMedGoogle Scholar
  236. Vellani V, Petrosino S, de Petrocellis L, Valenti M, Prandini M, Magherini PC, McNaughton PA, Di Marzo V (2008) Functional lipidomics. Calcium-independent activation of endocannabinoid/endovanilloid lipid signalling in sensory neurons by protein kinases C and A and thrombin. Neuropharmacology 55:1274–1279PubMedGoogle Scholar
  237. Vennekens R, Voets T, Bindels RJ, Droogmans G, Nilius B (2002) Current understanding of mammalian TRP homologues. Cell Calcium 31:253–264PubMedGoogle Scholar
  238. Vetter SW, Leclerc E (2003) Novel aspects of calmodulin target recognition and activation. Europ J Biochem/FEBS 270:404–414Google Scholar
  239. Vincent HC, Lynch MJ, Pohley FM, Helgren FJ, Kirchmeyer FJ (1955) A taste panel study of cyclamate-saccharin mixture and of its components. J Am Pharm Assoc Am Pharm Assoc (Baltim) 44:442–446Google Scholar
  240. Vlachova V, Teisinger J, Susankova K, Lyfenko A, Ettrich R, Vyklicky L (2003) Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1. J Neurosci 23:1340–1350PubMedGoogle Scholar
  241. Voets T, Owsianik G, Janssens A, Talavera K, Nilius B (2007) TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat Chem Biol 3:174–182PubMedGoogle Scholar
  242. Volff JN (2005) Genome evolution and biodiversity in teleost fish. Heredity (Edinb) 94:280–294Google Scholar
  243. Vyklicky L, Novakova-Tousova K, Benedikt J, Samad A, Touska F, Vlachova V (2008) Calcium-dependent desensitization of vanilloid receptor TRPV1: a mechanism possibly involved in analgesia induced by topical application of capsaicin. Physiol Res/Academia Scientiarum Bohemoslovaca 57(Suppl 3):S59–S68Google Scholar
  244. Wahl P, Foged C, Tullin S, Thomsen C (2001) Iodo-resiniferatoxin, a new potent vanilloid receptor antagonist. Mol Pharmacol 59:9–15PubMedGoogle Scholar
  245. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951PubMedCentralPubMedGoogle Scholar
  246. Walker KM, Urban L, Medhurst SJ, Patel S, Panesar M, Fox AJ, McIntyre P (2003) The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 304:56–62PubMedGoogle Scholar
  247. Wang X, Miyares RL, Ahern GP (2005) Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1. J Physiol 564:541–547PubMedCentralPubMedGoogle Scholar
  248. Webster LR, Peppin JF, Murphy FT, Lu B, Tobias JK, Vanhove GF (2011) Efficacy, safety, and tolerability of NGX-4010, capsaicin 8 % patch, in an open-label study of patients with peripheral neuropathic pain. Diab Res Clin Pract 93:187–197Google Scholar
  249. Welch JM, Simon SA, Reinhart PH (2000) The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and differs from the activation by either acid or heat. Proc Natl Acad Sci U S A 97:13889–13894PubMedCentralPubMedGoogle Scholar
  250. White JP, Urban L, Nagy I (2011) TRPV1 function in health and disease. Curr Pharm Biotechnol 12:130–144PubMedGoogle Scholar
  251. Woo DH, Jung SJ, Zhu MH, Park CK, Kim YH, Oh SB, Lee CJ (2008a) Direct activation of transient receptor potential vanilloid 1(TRPV1) by diacylglycerol (DAG). Mol pain 4:42PubMedCentralPubMedGoogle Scholar
  252. Woo DH, Jung SJ, Zhu MH, Park CK, Kim YH, Oh SB, Lee CJ (2008b) Direct activation of transient receptor potential vanilloid 1(TRPV1) by diacylglycerol (DAG). Mol Pain 4:42PubMedCentralPubMedGoogle Scholar
  253. Wood JN, Winter J, James IF, Rang HP, Yeats J, Bevan S (1988) Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture. J Neurosci 8:3208–3220PubMedGoogle Scholar
  254. Wu ZZ, Chen SR, Pan HL (2006) Signaling mechanisms of down-regulation of voltage-activated Ca2+ channels by transient receptor potential vanilloid type 1 stimulation with olvanil in primary sensory neurons. Neuroscience 141:407–419PubMedGoogle Scholar
  255. Xu H, Blair NT, Clapham DE (2005) Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J Neurosci 25:8924–8937PubMedGoogle Scholar
  256. Xu ZZ, Zhang L, Liu T, Park JY, Berta T, Yang R, Serhan CN, Ji RR (2010) Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat Med 16:592–597. 1p following 597Google Scholar
  257. Yang F, Cui Y, Wang K, Zheng J (2010) Thermosensitive TRP channel pore turret is part of the temperature activation pathway. Proc Natl Acad Sci U S A 107:7083–7088PubMedCentralPubMedGoogle Scholar
  258. Yao J, Qin F (2009) Interaction with phosphoinositides confers adaptation onto the TRPV1 pain receptor. PLoS Biol 7:e46PubMedGoogle Scholar
  259. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2:596–607PubMedGoogle Scholar
  260. Zhang X, Huang J, McNaughton PA (2005) NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J 24:4211–4223PubMedCentralPubMedGoogle Scholar
  261. Zhang X, Li L, McNaughton PA (2008) Proinflammatory mediators modulate the heat-activated ion channel TRPV1 via the scaffolding protein AKAP79/150. Neuron 59:450–461PubMedGoogle Scholar
  262. Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457PubMedGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Istvan Nagy
    • 1
    Email author
  • Dominic Friston
    • 1
  • João Sousa Valente
    • 1
  • Jose  Vicente Torres Perez
    • 1
  • Anna P. Andreou
    • 1
  1. 1.Department of Surgery and Cancer, Section of Anaesthetics, Pain Medicine and Intensive CareImperial College London, Chelsea and Westminster HospitalLondonUK

Personalised recommendations