Advertisement

Mathematical Models for Blood Coagulation

  • Tomáš BodnárEmail author
  • Antonio Fasano
  • Adélia Sequeira
Chapter
Part of the Advances in Mathematical Fluid Mechanics book series (AMFM)

Abstract

This chapter presents an overview and introduction to blood coagulation models. The historical exposure of the development of classical coagulation modeling theories is followed by a basic overview of blood coagulation biochemistry. The recent developments of cell-based models are explained in detail to demonstrate the current shift from the classical cascade/waterfall models. This phenomenological overview is followed by a survey of available mathematical concepts used to describe the blood coagulation process at various spatial scales including some of the related biophysical phenomena. A comprehensive survey of basic literature is provided for each of these topics.

Keywords

Blood Coagulation Coagulation cascade Coagulation model Chemical reaction Kinetics rate Platelet Red blood cell Thrombin Thrombosis 

Notes

Acknowledgements

The financial support for the present project was partly provided by the Czech Science Foundation under the Grant No.201/09/0917 and by the Portuguese Science Foundation under The Research Center CEMAT-IST and under the Project EXCL/MAT-NAN/0114/2012.

References

  1. 1.
    W.C. Aird, Vascular bed-specific thrombosis. J. Thromb. Haemost. 5(Suppl. 1), 283–291 (2007)Google Scholar
  2. 2.
    B.J. Alder, T.E. Wainwright, Phase transition for a hard sphere system. J. Chem. Phys. 27(5), 1208–1209 (1957)Google Scholar
  3. 3.
    D.J. Aldous, Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernoulli 5(1), 3–48 (1999)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Y. Alemu, D. Bluestein, Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif. Organs 31(9), 677–688 (2007)Google Scholar
  5. 5.
    A. Amadei, A.B.M. Linssen, H.J.C. Berendsen, Essential dynamics of proteins. Proteins Struct. Funct. Genet. 17(4), 412–425 (1993)Google Scholar
  6. 6.
    M. Anand, K.R. Rajagopal, A mathematical model to describe the change in the constitutive character of blood due to platelet activation. C. R. Mec. 330(8), 557–562 (2002)zbMATHGoogle Scholar
  7. 7.
    M. Anand, K.R. Rajagopal, A shear-thinning viscoelastic fluid model for describing the flow of blood. Int. J. Cardiovasc. Med. Sci. 4(2), 59–68 (2004)Google Scholar
  8. 8.
    M. Anand, K. Rajagopal, K.R. Rajagopal, A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. J. Theor. Med. 5(3–4), 183–218 (2003)MathSciNetzbMATHGoogle Scholar
  9. 9.
    M. Anand, K. Rajagopal, K.R. Rajagopal, A model for the formation and lysis of blood clots. Pathophysiol. Haemost. Thromb. 34(2–3), 109–120 (2005)Google Scholar
  10. 11.
    M. Anand, K. Rajagopal, K.R. Rajagopal, A model for the formation, growth, and lysis of clots in quiescent plasma. A comparison between the effects of antithrombin III deficiency and protein C deficiency. J. Theor. Biol. 253(4), 725–738 (2008)Google Scholar
  11. 12.
    M. Anand, J. Kwack, A. Masud, A new generalized Oldroid-b model for blood flow in complex geometries. Int. J. Eng. Sci. 72, 78–88 (2013)Google Scholar
  12. 13.
    S.T. Anning, The historical aspects of venous thrombosis. Med. Hist. 1(1), 28–37 (1957)MathSciNetGoogle Scholar
  13. 14.
    F.I. Ataullakhanov, G.T. Guria, V.I. Sarbash, R.I. Volkova, Spatiotemporal dynamics of clotting and pattern formation in human blood. Biochim. Biophys. Acta Gen. Subj. 1425(3), 453–468 (1998)Google Scholar
  14. 15.
    F. Bachmann, The discovery of factor X: a personal reminiscence. Thromb. Haemost. 98(1), 16–19 (2007)Google Scholar
  15. 16.
    P. Bagchi, Mesoscale simulation of blood flow in small vessels. Biophys. J. 92, 1858–1877 (2007)Google Scholar
  16. 17.
    C.N. Bagot, R. Arya, Virchow and his triad: a question of attribution. Br. J. Haematol. 143(2), 180–190 (2008)Google Scholar
  17. 18.
    I. Bahar, A.J. Rader, Coarse-grained normal mode analysis in structural biology. Curr. Opin. Struct. Biol. 15, 586–592 (2005)Google Scholar
  18. 19.
    F. Bai, Z. Wu, J. Jin, P. Hochendoner, J. Xing, Slow protein conformational change, Allostery and Network Dynamics, in Protein-Protein Interactions - Computational and Experimental Tools (InTech, Croatia, 2012), pp. 169–188Google Scholar
  19. 20.
    L. Baronciani, P.M. Manucci, The molecular basis of von Willebrand disease, in Molecular Hematology, chap. 19, 3rd edn., ed. by D. Provan, J.G. Gribben (Wiley-Blackwell, London, 2010), pp. 233–245Google Scholar
  20. 21.
    C. Basciano, C. Kleinstreuer, S. Hyun, E.A. Finol, A relation between near-wall particle-hemodynamics and onset of thrombus formation in abdominal aortic aneurysms. Ann. Biomed. Eng. 39(7), 2010–2026 (2011)Google Scholar
  21. 22.
    R.C. Becker, Cell-based models of coagulation: a paradigm in evolution. J. Thromb. Thrombolysis 20(1), 65–68 (2005)Google Scholar
  22. 23.
    E. Beltrami, J. Jesty, Mathematical analysis of activation thresholds in enzyme-catalyzed positive feedbacks: application to the feedbacks of blood coagulation. Proc. Natl. Acad. Sci. USA 92(19), 8744–8748 (1995)zbMATHGoogle Scholar
  23. 24.
    T.K. Belval, J.D. Hellums, Analysis of shear-induced platelet aggregation with population balance mathematics. Biophys. J. 50(3), 479–487 (1986)Google Scholar
  24. 25.
    J. Bernard, J.P. Soulier, Sur une nouvelle variété de dystrophie thrombocytaire hémorragipare congénitale. Sem. Hôp. Paris 24, 3217–3223 (1948)Google Scholar
  25. 26.
    J. Bernsdorf, S.E. Harrison, S.M. Smith, P.V. Lawford, D.R. Hose, Concurrent numerical simulation of flow and blood clotting using the lattice Boltzmann technique. Int. J. Bioinform. Res. Appl. 2(4), 371–380 (2006)Google Scholar
  26. 27.
    J. Bernsdorf, S.E. Harrison, S.M. Smith, P.V. Lawford, D.R. Hose, Applying the lattice Boltzmann technique to biofluids: a novel approach to simulate blood coagulation. Comput. Math. Appl. 55(7), 1408–1414 (2008)MathSciNetzbMATHGoogle Scholar
  27. 28.
    E.X. Berry, A mathematical framework for cloud models. J. Atmos. Sci. 26, 109–111 (1969)Google Scholar
  28. 29.
    J. Biasetti, P.G. Spazzini, J. Swedenborg, T. Christian Gasser, An integrated fluid-chemical model toward modeling the formation of intra-luminal thrombus in abdominal aortic aneurysms. Front. Physiol. 3, 1–16 (2012)Google Scholar
  29. 30.
    T. Bodnár, On the use of non-linear TVD filters in finite-volume simulations, in Algoritmy 2012 Proceedings of Contributed Papers and Posters, Bratislava. Faculty of Civil Engineering, Slovak University of Technology, pp. 190–199 (2012)Google Scholar
  30. 31.
    T. Bodnár, J. Příhoda, Numerical simulation of turbulent free-surface flow in curved channel. J. Flow Turbulence Combust. 76(4), 429–442 (2006)zbMATHGoogle Scholar
  31. 32.
    T. Bodnár, A. Sequeira, Numerical simulation of the coagulation dynamics of blood. Comput. Math. Methods Med. 9(2), 83–104 (2008)MathSciNetzbMATHGoogle Scholar
  32. 33.
    T. Bodnár, A. Sequeira, Numerical study of the significance of the non-Newtonian nature of blood in steady flow through a stenosed vessel, in Advances in Mathematical Fluid Mechanics, ed. by R. Rannacher, A. Sequeira (Springer, Berlin, 2010), pp. 83–104Google Scholar
  33. 34.
    T. Bodnár, K.R. Rajagopal, A. Sequeira, Simulation of the three-dimensional flow of blood using a shear-thinning viscoelastic fluid model. Math. Model. Nat. Phenom. 6(5), 1–24 (2011)MathSciNetzbMATHGoogle Scholar
  34. 35.
    T. Bodnár, A. Sequeira, M. Prosi, On the shear-thinning and viscoelastic effects of blood flow under various flow rates. Appl. Math. Comput. 217(11), 5055–5067 (2011)MathSciNetzbMATHGoogle Scholar
  35. 36.
    K. Boryczko, W. Dzwinela, D.A. Yuen, Modeling fibrin aggregation in blood flow with discrete-particles. Comput. Methods Programs Biomed. 75, 181–194 (2004)Google Scholar
  36. 37.
    K. Boryczko, D.A.Yuen, W. Dzwinel, Modeling mesoscopic fluids with discrete-particles – methods, algorithms, and results, in Finely Dispersed Particles: Micro-, Nano-, and Atto-Engineering (CRC Press, West Palm Beach, 2005), pp. 715–778Google Scholar
  37. 38.
    D.B. Brewer, Max Schultze (1865), G. Bizzozero (1882) and the discovery of the platelet. Br. J. Haematol. 133(3), 251–258 (2006)Google Scholar
  38. 39.
    L. Brugnano, F. Di Patti, G. Longo, An “incremental” mathematical model for Immune Thrombocytopenic Purpura (ITP). Math. Comput. Model. 42(11–12), 1299–1314 (2005)zbMATHGoogle Scholar
  39. 40.
    K.E. Brummel-Ziedins, T. Orfeo, M. Gissel, K.G. Mann, F.R. Rosendaal, Factor Xa generation by computational modeling: an additional discriminator to thrombin generation evaluation. PLoS ONE 7(1), e29178 (2012)Google Scholar
  40. 41.
    K. Brummel-Ziedins, Models for thrombin generation and risk of disease. J. Thromb. Haemost. 11(Suppl.1), 212–223 (2013)Google Scholar
  41. 42.
    D. Brune, S. Kim, Predicting protein diffusion coefficients. Proc. Natl. Acad. Sci. USA 90(9), 3835–3839 (1993)Google Scholar
  42. 43.
    S. Butenas, T. Orfeo, M.T. Gissel, K.E. Brummel, K.G. Mann, The significance of circulating factor IXa in blood. J. Biol. Chem. 279(22), 22875–22882 (2004)Google Scholar
  43. 44.
    M.S. Chatterjee, W.S. Denney, H. Jing, S.L. Diamond, Systems biology of coagulation initiation: kinetics of thrombin generation in resting and activated human blood. PLoS Comput. Biol. 6(9), 1–24 (2010)Google Scholar
  44. 45.
    R. Chaturvedi, C. Huang, B. Kazmierczak, T. Schneider, J.A. Izaguirre, T. Glimm, H.G.E. Hentschel, J.A. Glazier, S.A. Newman, M.S. Alber, On multiscale approaches to three-dimensional modelling of morphogenesis. J. R. Soc. Interface 2(3), 237–253 (2005)Google Scholar
  45. 47.
    T. Cickovski, K. Aras, M.S. Alber, J.A. Izaguirre, M. Swat, J.A. Glazier, R.M.H. Merks, T. Glimm, H.G.E. Hentschel, S.A. Newman, From genes to organisms via the cell a problem-solving environment for multicellular development. Comput. Sci. Eng. 9(4), 50–60 (2007)Google Scholar
  46. 48.
    S. Cito, M.D. Mazzeo, L. Badimon, A review of macroscopic thrombus modeling methods. Thromb. Res. 131(2), 116–124 (2013)Google Scholar
  47. 49.
    K.J. Clementson, Platelets disorders, in Molecular Hematology, chap. 20, 3rd edn., ed. by D. Provan, J.G. Gribben (Wiley-Blackwell, London, 2010), pp. 246–258Google Scholar
  48. 50.
    B.S. Coller, A brief history of ideas about platelets in health and disease, in Platelets (Academic, New York, 2007), pp. xxiii–xliiGoogle Scholar
  49. 51.
    B. Cooper, Osler’s role in defining the third corpuscle, or “blood plates”. Proc. (Bayl. Univ. Med. Cent.) 18(4), 376–378 (2005)Google Scholar
  50. 52.
    J.M. Coutinho, J.M. Ferro, P. Canh ao, F. Barinagarrementeria, C. Cantú, M.-G. Bousser, J. Stam, Cerebral venous and sinus thrombosis in women. Stroke 40(7), 2356–2361 (2009)Google Scholar
  51. 53.
    K.J. Croce, M. Sakuma, D.I. Simon, Platelet-leukocyte-endothelial cross talk, in Platelets in Hematologic and Cardiovascular Disorders: A Clinical Handbook (Cambridge University Press, Cambridge, 2007), pp. 106–123Google Scholar
  52. 54.
    L.M. Crowl, A.L. Fogelson, Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells. Int. J. Numer. Method Biomed. Eng. 26, 471–487 (2010)MathSciNetzbMATHGoogle Scholar
  53. 55.
    S. Cunha Orfao, G. Jank, K. Mottaghy, S. Walcher, E. Zerz, Qualitative properties and stabilizability of a model for blood thrombin formation. J. Math. Anal. Appl. 346, 218–226 (2008)MathSciNetzbMATHGoogle Scholar
  54. 56.
    B. Dahlbäck, Blood coagulation and its regulation by anticoagulant pathways: genetic pathogenesis of bleeding and thrombotic diseases. J. Inter. Med. 257(3), 209–223 (2005)Google Scholar
  55. 57.
    B. Dählbeck, A. Hillarp, Molecular coagulation and thrombophilia, in Molecular Hematology, chap. 17, 3rd edn., ed. by D. Provan, J.G. Gribben (Wiley-Blackwell, London, 2010), pp. 208–218Google Scholar
  56. 58.
    G. Davì, C. Patrono, Platelets activation and atherothrombosis. N. Engl. J. Med. 367, 2482–2494 (2007)Google Scholar
  57. 59.
    E.W. Davie, O.D. Ratnoff, Waterfall sequence for intrinsic blood clotting. Science 145(3638), 1310–1312 (1964)Google Scholar
  58. 60.
    S.L. Diamond, S. Anand, Inner clot diffusion and permeation during fibrinolysis. Biophys. J. 65(6), 2622–2643 (1993)Google Scholar
  59. 61.
    F. Dong, B. Olsen, N.A. Baker, Computational methods for biomolecular electrostatics, in Biophysical Tools for Biologists, Volume One: In Vitro Techniques, Volume 84 of Methods in Cell Biology (Elsevier, Amsterdam, 2008), pp. 843–870Google Scholar
  60. 62.
    R.L. Drake, A general mathematical survey of the coagulation equation, in Topics in Current Aerosol Research (Part 2), Volume 3 of International Reviews in Aerosol Physics and Chemistry, ed. by G.M. Hidy, J.R. Brock (Pergamon, Oxford, 1972), pp. 201–376Google Scholar
  61. 63.
    R.L. Drake, The scalar transport equation of coalescence theory: moments and kernels. J. Atmos. Sci. 29, 537–547 (1972)MathSciNetGoogle Scholar
  62. 64.
    P.B. Dubovskii, Mathematical theory of coagulation. Technical report, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center (1994)zbMATHGoogle Scholar
  63. 65.
    W. Dzwinel, K. Boryczko, D.A. Yuen, A discrete-particle model of blood dynamics in capillary vessels. J. Colloid Interface Sci. 258, 163–173 (2003)Google Scholar
  64. 66.
    W. Dzwinel, D.A. Yuen, K. Boryczko, Bridging diverse physical scales with the discrete-particle paradigm in modeling colloidal dynamics with mesoscopic features. Chem. Eng. Sci. 61, 2169–2185 (2006)Google Scholar
  65. 67.
    K.-E. Eilertsen, B. Østerud, The role of blood cells and their microparticles in blood coagulation. Biochem. Soc. Trans. 33(2), 418–422 (2005)Google Scholar
  66. 68.
    B. Engquist, P. Lötstedt, B. Sjögreen, Nonlinear filters for efficient shock computation. Math. Comput. 52(186), 509–537 (1989)zbMATHGoogle Scholar
  67. 69.
    E.A. Ermakova, M.A. Panteleev, E.E. Shnol, Blood coagulation and propagation of autowaves in flow. Pathophysiol. Haemost. Thromb. 34(2–3), 135–142 (2006)Google Scholar
  68. 70.
    A. Farina, A. Fasano, J. Mizerski, A new model for blood flow in fenestrated capillaries with application to ultrafiltration in kidney glomeruli. A.M.S.A. (2014, to appear)Google Scholar
  69. 71.
    A. Fasano, R.F. Santos, A. Sequeira, Blood coagulation: a puzzle for biologists, a maze for mathematicians, in Modeling of Physiological Flows, Volume 5 of MS&A – Modeling, Simulation and Applications (Springer, Milan, 2012), pp. 41–75Google Scholar
  70. 72.
    A. Fasano, J. Pavlova, A. Sequeira, A synthetic model for blood coagulation including blood slip at the vessel wall. Clin. Hemorheol. Microcirc. 54(1), 1–14 (2013)Google Scholar
  71. 73.
    D.A. Fedosov, G.E. Karniadakis, Triple-decker: interfacing atomistic–mesoscopic–continuum flow regimes. J. Comput. Phys. 228(4), 1157–1171 (2009)MathSciNetzbMATHGoogle Scholar
  72. 74.
    D.A. Fedosov, H. Noguchi, G. Gompper, Multiscale modeling of blood flow: from single cells to blood rheology. Biomech. Model. Mechanobiol. 1–20 (2013). doi:10.1007/s10237-013-0497-9Google Scholar
  73. 75.
    N. Filipovic, M. Kojic, A. Tsuda, Modelling thrombosis using dissipative particle dynamics method. Philos. Trans. R. Soc. A 366, 3265–3279 (2008)MathSciNetGoogle Scholar
  74. 76.
    M.H. Flamm, S.L. Diamond, Multiscale systems biology and physics of thrombosis under flow. Ann. Biomed. Eng. 40(11), 2355–2364 (2012)Google Scholar
  75. 77.
    A.L. Fogelson, R.D. Guy, Platelet-wall interactions in continuum models of platelet thrombosis: formulation and numerical solution. Math. Med. Biol. 21(4), 293–334 (2004)zbMATHGoogle Scholar
  76. 78.
    A.L. Fogelson, R.D. Guy, Immersed-boundary-type models of intravascular platelet aggregation. Comput. Methods Appl. Mech. Eng. 197, 2087–2104 (2008)MathSciNetzbMATHGoogle Scholar
  77. 79.
    A.L. Fogelson, J.P. Keener, Toward an understanding of fibrin branching structure. Phys. Rev. E 81(5), 051922-1–051922-9 (2010)Google Scholar
  78. 80.
    A.L. Fogelson, N. Tania, Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation. Pathophysiol. Haemost. Thromb. 34(2–3), 91–108 (2006)Google Scholar
  79. 81.
    C. Forrey, M. Muthukumar, Langevin dynamics simulations of genome packing in bacteriophage. Biophys. J. 91, 25–41 (2006)Google Scholar
  80. 82.
    W.B. Foster, M.E. Nesheim, K.G. Mann, The factor Xa-catalyzed activation of factor V. J. Biol. Chem. 258(22), 13970–13977 (1983)Google Scholar
  81. 83.
    S.K. Friedlander, On the particle size spectrum of a condensing vapor. Phys. Fluids 3(5), 693–696 (1960)MathSciNetGoogle Scholar
  82. 84.
    S. Fuchigami, S. Omori, M. Ikeguchi, A. Kidera, Normal mode analysis of protein dynamics in a non-Eckart frame. J. Chem. Phys. 132, 104109-1–104109-7 (2010)Google Scholar
  83. 85.
    R.R. Gabdoulline, R.C. Wade, Brownian dynamics simulation of protein-protein diffusional encounter. Methods 14(3), 329–341 (1998)Google Scholar
  84. 86.
    D. Gailani, A. Zivelin, D. Sinha, P.N. Walsh, Do platelets synthesize factor XI? J. Thromb. Haemost. 2(10), 1709–1712 (2004)Google Scholar
  85. 87.
    R.B. Gayle, C.R. Maliszewski, S.D. Gimpel, M.A. Schoenborn, R.G. Caspary, C. Richards, K. Brasel, V. Price, J.H. Drosopoulos, N. Islam, T.N. Alyonycheva, M.J. Broekman, A.J. Marcus, Inhibition of platelet function by recombinant soluble ecto-ADPase/CD39. J. Clin. Investig. 101(9), 1851–1859 (1998)Google Scholar
  86. 88.
    V. Gazzaniga, L. Ottini, The discovery of platelets and their function. Vesalius VII(1), 22–26 (2001)Google Scholar
  87. 89.
    D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)MathSciNetGoogle Scholar
  88. 90.
    D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)Google Scholar
  89. 91.
    D.T. Gillespie, Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007)Google Scholar
  90. 92.
    D.T. Gillespie, Simulation methods in systems biology, in Formal Methods for Computational Systems Biology, Volume 5016 of Lecture Notes in Computer Science, ed. by M. Bernardo, P. Degano, G. Zavattaro (Springer, Berlin, 2008), pp. 125–167Google Scholar
  91. 93.
    D.T. Gillespie, Deterministic limit of stochastic chemical kinetics. J. Phys. Chem. B 113(6), 1640–1644 (2009)Google Scholar
  92. 94.
    W.E. Glanzmann, Hereditäre hämorrhägische Thrombasthenie. ein Beitrag zur Pathologie der Blutplättchen. Jahrb. Kinderheilkund. 88(1–42), 113–141 (1918)Google Scholar
  93. 95.
    J.A. Glazier, F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E 47(3), 2128–2154 (1993)Google Scholar
  94. 96.
    G.H. Goldsmith, H. Saito, O.D. Ratnoff, The activation of plasminogen by Hageman factor (factor XII) and Hageman factor fragments. J. Clin. Investig. 62(1), 54–60 (1978)Google Scholar
  95. 97.
    M. Grigioni, C. Daniele, U. Morbiducci, G. D’Avenio, G. Di Benedetto, V. Barbaro, The power-law mathematical model for blood damage prediction: analytical developments and physical inconsistencies. Artif. Organs 28(5), 467–475 (2004)Google Scholar
  96. 98.
    M. Grigioni, U. Morbiducci, G. D’Avenio, G. Di Benedetto, C. Del Gaudio, A novel formulation for blood trauma prediction by a modified power-law mathematical model. Biomech. Model. Mechanobiol. 4(4), 249–260 (2005)Google Scholar
  97. 99.
    K.G. Guria, A.R. Gagarina, G.T. Guria, Instabilities in fibrinolytic regulatory system. theoretical analysis of blow-up phenomena. J. Theor. Biol. 304, 27–38 (2012)Google Scholar
  98. 100.
    R.I. Handin, Inherited platelet disorders. Am. Soc. Hematology 2005(1), 396–402 (2005)Google Scholar
  99. 101.
    S.E. Harrison, S.M. Smith, J. Bernsdorf, D.R. Hose, P.V. Lawford, Application and validation of the lattice Boltzmann method for modelling flow-related clotting. J. Biomech. 40(13), 3023–3028 (2007)Google Scholar
  100. 102.
    S. Hayward, B.L. de Groot, Normal modes and essential dynamics, in Molecular Modeling of Proteins, Volume 443 of Methods in Molecular Biology (Humana Press, Clifton, 2008), pp. 89–106Google Scholar
  101. 103.
    H.C. Hemker, S. Kerdelo, R.M.W. Kremers, Is there value in kinetic modeling of thrombin generation? No (unless). J. Thromb. Haemost. 10(8), 1470–1477 (2012)Google Scholar
  102. 104.
    O. Hetland, A.B. Brovold, R. Holme, G. Gaudernack, H. Prydz, Thromboplastin (tissue factor) in plasma membranes of human monocytes. Biochem. J. 228(3), 735–743 (1985)Google Scholar
  103. 105.
    M.F. Hockin, K.C. Jones, S.J. Everse, K.G. Mann, A model for the stoichiometric regulation of blood coagulation. J. Biol. Chem. 277(21), 18322–18333 (2002)Google Scholar
  104. 106.
    M. Hoffman, Remodeling the blood coagulation cascade. J. Thromb. Thrombolysis 16(1–2), 17–20 (2003)Google Scholar
  105. 107.
    B. Honig, A. Nicholls, Classical electrostatics in biology and chemistry. Science 268(5214), 1144–1149 (1995)Google Scholar
  106. 108.
    P.J. Hoogerbrugge, J.M.V.A. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19(3), 155–160 (1992)Google Scholar
  107. 109.
    W.H. Howell, E. Holt, Two new factors in blood coagulation: heparin and pro-antithrombin. Am. J. Physiol. 47, 228–241 (1918)Google Scholar
  108. 111.
    P.Y. Huang, J.D. Hellums, Aggregation and disaggregation kinetics of human blood platelets: part I. Development and validation of a population balance method. Biophys. J. 65(1), 334–343 (1993)Google Scholar
  109. 113.
    P.Y. Huang, J.D. Hellums, Aggregation and disaggregation kinetics of human blood platelets: part III. The disaggregation under shear stress of platelet aggregates. Biophys. J. 65(1), 354–361 (1993)Google Scholar
  110. 114.
    S.J. Hund, J.F. Antaki, M. Massoudi, On the representation of turbulent stresses for computing blood damage. Int. J. Eng. Sci. 48(11), 1325–1331 (2010)zbMATHGoogle Scholar
  111. 115.
    S. Hyun, C. Kleinstreuer, J.P. Archie Jr., Computational particle-hemodynamics analysis and geometric reconstruction after carotid endarterectomy. Comput. Biol. Med. 31, 365–384 (2001)Google Scholar
  112. 116.
    Y. Imai, H. Kondo, T. Ishikawa, C.T. Lim, T. Yamaguchi, Modeling of hemodynamics arising from malaria infection. J. Biomech. 43, 1386–1393 (2010)Google Scholar
  113. 117.
    G.I. Ingram, The history of hemophilia. J. Clin. Pathol. 29(6), 469–479 (1976)Google Scholar
  114. 118.
    B. Isralewitz, J. Baudry, J. Gullingsrud, D. Kosztin, K. Schulten, Steered molecular dynamics investigations of protein function. J. Mol. Graph. Model. 19, 13–25 (2001)Google Scholar
  115. 119.
    A. Jameson, Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings, in AIAA 10th Computational Fluid Dynamics Conference, Honolulu, Paper 91-1596, June 1991Google Scholar
  116. 120.
    A. Jameson, W. Schmidt, E. Turkel, Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping Schemes, in AIAA 14th Fluid and Plasma Dynamic Conference, Palo Alto, Paper 81-1259, June 1981Google Scholar
  117. 121.
    I. Johansson, N Lynöe, Medicine & Philosophy: A Twenty-First Century Introduction (Ontos Verlag, Frankfurt, 2008)Google Scholar
  118. 122.
    K.C. Jones, K.G. Mann, A model for the tissue factor pathway to thrombin. II. A mathematical simulation. J. Biol. Chem. 269(37), 23367–23373 (1994)Google Scholar
  119. 123.
    H. Kamada, K.I. Tsubota, M. Nakamura, S. Wada, T. Ishikawa, T. Yamaguchi, A three-dimensional particle simulation of the formation and collapse of a primary thrombus. Int. J. Numer. Methods Biomed. Eng. 26, 488–500 (2010)MathSciNetzbMATHGoogle Scholar
  120. 124.
    H. Kamada, Y. Imai, M. Nakamura, T. Ishikawa, T. Yamaguchi, Computational analysis on the mechanical interaction between a thrombus and red blood cells: possible causes of membrane damage of red blood cells at microvessels. Med. Eng. Phys. 34, 1411–1420 (2012)Google Scholar
  121. 125.
    H. Kamada, Y. Imai, M. Nakamura, T. Ishikawa, T. Yamaguchi, Computational study on thrombus formation regulated by platelet glycoprotein and blood flow shear. Microvasc. Res. 89, 95–106 (2013)Google Scholar
  122. 126.
    M. Karplus, J. Kuriyan, Molecular dynamics and protein function. Proc. Natl. Acad. Sci. USA 102(19), 6679–6685 (2005)Google Scholar
  123. 127.
    J. Keener, J. Sneyd, Muscle, in Mathematical Physiology, Volume 8 of Interdisciplinary Applied Mathematics, chap. 18 (Springer, New York, 1998), pp. 542–578Google Scholar
  124. 128.
    J.G. Kelton, T.E. Warkentin, Heparin-induced thrombocytopenia: a historical perspective. Blood 112(7), 2607–2616 (2008)Google Scholar
  125. 129.
    M.A. Khanin, V.V. Semenov, A mathematical model of the kinetics of blood coagulation. J. Theor. Biol. 136(2), 127–134 (1989)MathSciNetGoogle Scholar
  126. 130.
    O.V. Kim, Z. Xu, E.D. Rosen, M.S. Alber, Fibrin networks regulate protein transport during thrombus development. PLoS Comput. Biol. 9(6), e1003095 (2013)Google Scholar
  127. 131.
    P. Kleinbongard, R. Schulz, T. Rassaf, T. Lauer, A. Dejam, T. Jax, I. Kumara, P. Gharini, S. Kabanova, B. Ozüyaman, H.G. Schnürch, A. Gödecke, A.A. Weber, M. Robenek, H. Robenek, W. Bloch, P. Rösen, M. Kelm, Red blood cells express a functional endothelial nitric oxide synthase. Blood 107(7), 2943–2951 (2006)Google Scholar
  128. 132.
    C. Kleinstreuer, J.R. Buchanan, M. Lei, G. A. Truskey, Computational analysis of particle hemodynamics and prediction of the onset of arterial diseases, in Biomechanical Systems, Techniques and Applications, Volume II. Cardiovascular Techniques (CRC Press, West Palm Beach, 2001)Google Scholar
  129. 133.
    A.E. Kogan, D.V. Kardakov, M.A. Khanin, Analysis of the activated partial thromboplastin time test using mathematical modeling. Thromb. Res. 101(4), 299–310 (2001)Google Scholar
  130. 134.
    H. Kondo, Y. Imai, T. Ishikawa, K.-I. Tsubota, T. Yamaguchi, Hemodynamic analysis of microcirculation in malaria infection. Ann. Biomed. Eng. 37(4), 702–709 (2009)Google Scholar
  131. 135.
    S. Koshizuka, Y. Oka, Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 123(3), 421–434 (1996)Google Scholar
  132. 136.
    M. Kostoglou, Extended cell average technique for the solution of coagulation equation. J. Colloid Interface Sci. 306(1), 72–81 (2007)Google Scholar
  133. 137.
    A.L. Kuharsky, A.L. Fogelson, Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophys. J. 80(3), 1050–1074 (2001)Google Scholar
  134. 138.
    K. Laki, L. Lóránd, On the solubility of fibrin clots. Science 108(2802), 280 (1948)Google Scholar
  135. 139.
    N. Lannoy, C. Hermans, The ‘royal disease’- haemophilia A or B? A haematological mystery is finally solved. Haemophilia 16(6), 843–847 (2010)Google Scholar
  136. 140.
    I.J. Laurenzi, S.L. Diamond, Monte Carlo simulation of the heterotypic aggregation kinetics of platelets and neutrophils. Biophys. J. 77(3), 1733–1746 (1999)Google Scholar
  137. 141.
    E.H. Lee, J. Hsin, M. Sotomayor, G. Comellas, K. Schulten, Discovery through the computational microscope. Structure 17, 1295–1306 (2009)Google Scholar
  138. 142.
    R.J. Leipold, T.A. Bozarth, A.L. Racanelli, I.B. Dicker, Mathematical model of serine protease inhibition in the tissue factor pathway to thrombin. J. Biol. Chem. 270(43), 25383–25387 (1995)Google Scholar
  139. 143.
    A. Leuprecht, K. Perktold, Computer simulation of non-Newtonian effects on blood flow in large arteries. Comput. Methods Biomech. Biomed. Eng. 4(2), 149–163 (2001)Google Scholar
  140. 144.
    S.N. Levine, Enzyme amplifier kinetics. Science 152(3722), 651–653 (1966)Google Scholar
  141. 145.
    M. Levitt, C. Sander, P.S. Stern, Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J. Mol. Biol. 181, 423–447 (1985)Google Scholar
  142. 146.
    L.D. Libersky, A.G. Petschek, T.C. Carney, J.R. Hipp, High strain lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response. J. Comput. Phys. 109(1), 67–75 (1993)zbMATHGoogle Scholar
  143. 147.
    B.B.C. Lim, E.H. Lee, M. Sotomayor, K. Schulten, Molecular basis of fibrin clot elasticity. Structure 16, 449–459 (2008)Google Scholar
  144. 148.
    Y. Liu, W.K. Liu, Rheology of red blood cell aggregation by computer simulation. J. Comput. Phys. 220, 135–154 (2006)Google Scholar
  145. 149.
    Y. Liu, L. Zhang, X. Wang, W.K. Liu, Coupling of Navier-Stokes equations with protein molecular dynamics and its application to hemodynamics. Int. J. Numer. Methods Fluids 46(12), 1237–1252 (2004)MathSciNetzbMATHGoogle Scholar
  146. 150.
    W.K. Liu, Y. Liu, D. Farrell, L. Zhang, X.S. Wang, Y. Fukui, N. Patankar, Y. Zhang, C. Bajaj, J. Lee, J. Hong, X. Chen, H. Hsu, Immersed finite element method and its applications to biological systems. Comput. Methods Appl. Mech. Eng. 195, 1722–1749 (2006)MathSciNetzbMATHGoogle Scholar
  147. 151.
    K. Lo, W.S. Denney, S.L. Diamond, Stochastic modeling of blood coagulation initiation. Pathophysiol. Haemost. Thromb. 34(2–3), 80–90 (2006)Google Scholar
  148. 152.
    A.I. Lobanov, T.K. Starozhilova, The effect of convective flows on blood coagulation processes. Pathophysiol. Haemost. Thromb. 34(2–3), 121–134 (2006)Google Scholar
  149. 153.
    A.I. Lobanov, A.V. Nikolaev, T.K. Starozhilova, Mathematical model of fibrin polymerization. Math. Model. Nat. Phenom. 6(7), 55–69 (2011)MathSciNetGoogle Scholar
  150. 154.
    P.W. Longest, C. Kleinstreuer, Comparison of blood particle deposition models for non-parallel flow domains. J. Biomech. 36, 421–430 (2003)Google Scholar
  151. 155.
    P.W. Longest, C. Kleinstreuer, J.R. Buchanan, Efficient computation of micro-particle dynamics including wall effects. Comput. Fluids 33, 577–601 (2004)zbMATHGoogle Scholar
  152. 156.
    J. Ma, Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13, 373–380 (2005)Google Scholar
  153. 157.
    Y. Ma, J. Wang, S. Liang, C. Dong, Q. Du, Application of population dynamics to study heterotypic cell aggregations in the near-wall region of a shear flow. Cell. Mol. Bioeng. 3(1), 3–19 (2010)Google Scholar
  154. 158.
    R.G. MacFarlane, An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature 202(4931), 498–499 (1964)Google Scholar
  155. 159.
    K.G. Mann, Is there value in kinetic modeling of thrombin generation? Yes. J. Thromb. Haemost. 10(8), 1463–1469 (2012)Google Scholar
  156. 160.
    K.G. Mann, S. Butenas, K. Brummel, The dynamics of thrombin formation. Arterioscler. Thromb. Vasc. Biol. 23(1), 17–25 (2003)Google Scholar
  157. 161.
    K.G. Mann, K. Brummel-Ziedins, T. Orfeo, S. Butenas, Models of blood coagulation. Blood Cells Mol. Dis. 36(2), 108–117 (2006)Google Scholar
  158. 162.
    J.A. Marcum, The origin of the dispute over the discovery of heparin. J. Hist. Med. Allied Sci. 55(1), 37–66 (2000)Google Scholar
  159. 163.
    F. Martorana, A. Moro, On the kinetics of enzyme amplifier systems with negative feedback. Math. Biosci. 21(1–2), 77–84 (1974)zbMATHGoogle Scholar
  160. 164.
    D. Massai, G. Soloperto, D. Gallo, X.Y. Xu, U. Morbiducci, Shear-induced platelet activation and its relationship with blood flow topology in a numerical model of stenosed carotid bifurcation. Eur. J. Mech. B Fluids 35, 92–101 (2012)Google Scholar
  161. 165.
    M.R. Maxey, B.K. Patel, Localized force representations for particles sedimenting in Stokes flow. Int. J. Multiphase Flow 27(9), 1603–1626 (2001)zbMATHGoogle Scholar
  162. 166.
    J.A. McCammon, B.R. Gelin, M. Karplus, Dynamics of folded proteins. Nature 267(5612), 585–590 (1977)Google Scholar
  163. 167.
    J. McLean, The discovery of heparin. Circulation 19(1), 75–78 (1959)Google Scholar
  164. 168.
    S. Melchionna, A model for red blood cells in simulations of large-scale blood flows. Macromol. Theory Simul. 20(7), 548–561 (2011)Google Scholar
  165. 169.
    Z.A. Melzak, A scalar transport equation. Trans. Am. Math. Soc. 85(2), 547–560 (1957)MathSciNetzbMATHGoogle Scholar
  166. 170.
    Z.A. Melzak, A scalar transport equation ii. Mich. Math. J. 4(3), 193–206 (1957)MathSciNetGoogle Scholar
  167. 171.
    A.D. Michelson, Platelets, 2nd edn. (Academic, New York, 2007)Google Scholar
  168. 172.
    G. Moiseyev, P.Z. Bar-Yoseph, No need for particle tracing: from accumulating fluid properties to novel blood coagulation model in the lattice Boltzmann method. J. Biomech. 43(5), 864–870 (2010)Google Scholar
  169. 173.
    G. Moiseyev, P.Z. Bar-Yoseph, Computational modeling of thrombosis as a tool in the design and optimization of vascular implants. J. Biomech. 46, 248–252 (2013)Google Scholar
  170. 174.
    G. Moiseyev, S. Givli, P.Z. Bar-Yoseph, Fibrin polymerization in blood coagulation-a statistical model. J. Biomech. 46(1), 26–30 (2013)Google Scholar
  171. 175.
    J.J. Monaghan, Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30(1), 543–574 (1992)Google Scholar
  172. 176.
    D.D. Monkovic, P.B. Tracy, Activation of human factor V by factor Xa and thrombin. Biochemistry 29(5), 1118–1128 (1990)Google Scholar
  173. 177.
    U. Morbiducci, R. Ponzini, M. Nobili, D. Massai, F.M. Montevecchi, D. Bluestein, A. Redaelli, Blood damage safety of prosthetic heart valves. Shear-induced platelet activation and local flow dynamics: a fluid–structure interaction approach. J. Biomech. 42, 1952–1960 (2009)Google Scholar
  174. 178.
    D. Mori, K. Yano, K.-i. Tsubota, T. Ishikawa, S. Wada, T. Yamaguchi, Computational study on effect of red blood cells on primary thrombus formation. Thromb. Res. 123, 114–121 (2008)Google Scholar
  175. 179.
    A. Moro, A.T. Bharucha-Reid. On the kinetics of enzyme amplifier systems. Math. Biosci. 5(3–4), 391–402 (1969)zbMATHGoogle Scholar
  176. 180.
    L. Mountrakis, E. Lorenz, A.G. Hoekstra, Where do the platelets go? A simulation study of fully resolved blood flow through aneurysmal vessels. Interface Focus 3(2), 20120089 (2013)Google Scholar
  177. 181.
    M.E. Nesheim, W.M. Canfield, W. Kisiel, K.G. Mann, Studies of the capacity of factor Xa to protect factor Va from inactivation by activated protein C. J. Biol. Chem. 257(3), 1443–1447 (1982)Google Scholar
  178. 182.
    K.C. Ng, Y.L. Ng, M.Z. Yusoff, Development of a Lagrangian meshless flow solver based on the moving particle semi-implicit (MPS) method, in 4th International Conference on Energy and Environment 2013 (ICEE2013), Volume 16 of IOP Conference Series: Earth and Environmental Science, p. 012151 (2013)Google Scholar
  179. 183.
    M. Nobili, J. Sheriff, U. Morbiducci, A. Redaelli, D. Bluestein, Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. ASAIO J. 54(1), 64–72 (2008)Google Scholar
  180. 184.
    P. Espa nol, Fluid particle model. Phys. Rev. E 57(3), 2930–2948 (1998)Google Scholar
  181. 185.
    Th. Orfeo, S. Butenas, K.E. Brummel-Ziedins, K.G. Mann, The tissue factor requirement in blood coagulation. J. Biol. Chem. 280, 42887–42896 (2005)Google Scholar
  182. 186.
    T. Orfeo, M. Gissel, S. Butenas, A. Undas, K.E. Brummel-Ziedins, K.G. Mann, Anticoagulants and the propagation phase of thrombin generation. PLoS ONE 6(11), e27852 (2011)Google Scholar
  183. 187.
    R. Ouared, B. Chopard, B. Stahl, D.A. Rüfenacht, H. Yilmaz, G. Courbebaisse, Thrombosis modeling in intracranial aneurysms: a lattice Boltzmann numerical algorithm. Comput. Phys. Commun. 179(1–3), 128–131 (2008)zbMATHGoogle Scholar
  184. 188.
    P. Owren, Parahaemophilia. Haemorrhagic diathesis due to absence of a previously unknown clotting factor. Lancet 249(6449), 446–448 (1947)Google Scholar
  185. 189.
    M.A. Panteleev, M.V. Ovanesov, D.A. Kireev, A.M. Shibeko, E.I. Sinauridze, N.M. Ananyeva, A.A. Butylin, E.L. Saenko, F.I. Ataullakhanov, Spatial propagation and localization of blood coagulation are regulated by intrinsic and protein c pathways, respectively. Biophys. J. 90(5), 1489–1500 (2006)Google Scholar
  186. 190.
    V. Pappu, P. Bagchi, 3D computational modeling and simulation of leukocyte rolling adhesion and deformation. Comput. Biol. Med. 38, 738–753 (2008)Google Scholar
  187. 191.
    V. Pappu, S.K. Doddi, P. Bagchi, A computational study of leukocyte adhesion and its effect on flow pattern in microvessels. J. Theor. Biol. 254, 483–498 (2008)MathSciNetGoogle Scholar
  188. 192.
    I.V. Pivkin, P.D. Richardson, G. Karniadakis, Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi. Proc. Natl. Acad. Sci. USA 103(46), 17164–17169 (2006)Google Scholar
  189. 193.
    I.V. Pivkin, P.D. Richardson, G.E. Karniadakis, Effect of red blood cells on platelet aggregation. IEEE Eng. Med. Biol. Mag. 28(2), 32–37 (2009)Google Scholar
  190. 195.
    A. Podmore, M. Smith, G. Savidge, A. Alhaq, Real-time quantitative PCR analysis of factor XI mRNA variants in human platelets. J. Thromb. Haemost. 2(10), 1713–1719 (2004)Google Scholar
  191. 196.
    A.V. Pokhilko, F.I. Ataullakhanov, Contact activation of blood coagulation: trigger properties and hysteresis. J. Theor. Biol. 191(2), 213–219 (1998)Google Scholar
  192. 197.
    D. Raabe, Overview of the lattice Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering. Model. Simul. Mater. Sci. Eng. 12(6), R13–R46 (2004)Google Scholar
  193. 198.
    A. Rahman, Correlations in the motion of atoms in liquid argon. Phys. Rev. 136(2A), A405–A411 (1964)Google Scholar
  194. 199.
    K.R. Rajagopal, A.R. Srinivasa, A thermodynamic frame work for rate type fluid models. J. Non-Newtonian Fluid Mech. 88(3), 207–227 (2000)zbMATHGoogle Scholar
  195. 200.
    J.M. Ramstack, L. Zuckerman, L.F. Mockros, Shear-induced activation of platelets. J. Biomech. 12(2), 113–125 (1979)Google Scholar
  196. 201.
    O.D. Ratnoff, J.M. Rosenblum, Role of Hageman factor in the initiation of clotting by glass. Evidence that glass frees Hageman factor from inhibition. Am. J. Med. 25(2), 160–168 (1958)Google Scholar
  197. 202.
    R.L. Reddick, T.R. Griggs, M.A. Lamb, K.M. Brinkhous, Platelet adhesion to damaged coronary arteries: comparison in normal and von Willebrand disease swine. Proc. Natl. Acad. Sci. USA 79(16 I), 5076–5079 (1982)Google Scholar
  198. 203.
    D. Ribatti, E. Crivellato, Giulio Bizzozero and the discovery of platelets. Leuk. Res. 31(10), 1339–1341 (2007)Google Scholar
  199. 204.
    E. Richardson, Applications of a theoretical model for haemolysis in shear flow. Biorheology 12(1), 27–37 (1975)Google Scholar
  200. 205.
    F.R. Rickles, S. Patierno, P.M. Fernandez, Tissue factor, thrombin, and cancer. CHEST 124, 58S–68S (2003)Google Scholar
  201. 206.
    J.P. Riddel Jr., B.E. Aouizerat, C. Miaskowski, D.P. Lillicrap, Theories of blood coagulation. J. Pediatr. Oncol. Nurs. 24(3), 123–131 (2007)Google Scholar
  202. 207.
    J. Rivera, M.L. Lozano, L. Navarro-Núñez, V. Vicente, Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica 94(5), 700–711 (2009)Google Scholar
  203. 208.
    H.R. Roberts, Oscar Ratnoff: his contributions to the golden era of coagulation research. Br. J. Haematol. 122(2), 180–192 (2003)Google Scholar
  204. 209.
    Z.M. Ruggeri, Perspectives series: cell adhesion in vascular biology – von Willebrand factor. J. Clin. Investig. 99(4), 559–564 (1997)Google Scholar
  205. 210.
    J.E. Sadler, Biochemistry and genetics of von Willebrand factor. Annu. Rev. Biochem. 67, 395–424 (1998)Google Scholar
  206. 211.
    B. Savage, J.J. Sixma, Z.M. Ruggeri, Functional self-association of von Willebrand factor during platelet adhesion under flow. Proc. Natl. Acad. Sci. USA 99(1), 425–430 (2002)Google Scholar
  207. 212.
    A.H. Schmaier, G. LaRusch, Factor XII: new life for an old protein. Thromb. Haemost. 104(5), 915–918 (2010)Google Scholar
  208. 213.
    A. Sequeira, R.F. Santos, T. Bodnár. Blood coagulation dynamics: mathematical modeling and stability results. Math. Biosci. Eng. 8(2), 425–443 (2011)MathSciNetzbMATHGoogle Scholar
  209. 214.
    S.C. Shadden, S. Hendabadi, Potential fluid mechanic pathways of platelet activation. Biomech. Model. Mechanobiol. 12, 467–474 (2012)Google Scholar
  210. 215.
    V. Shankar, G.B. Wright, A.L. Fogelson, R.M. Kirbya, A study of different modeling choices for simulating platelets within the immersed boundary method. Appl. Numer. Math. 63, 58–77 (2013)MathSciNetzbMATHGoogle Scholar
  211. 216.
    A.M. Shibeko, E.S. Lobanova, M.A. Panteleev, F.I. Ataullakhanov, Blood flow controls coagulation onset via the positive feedback of factor VII activation by factor Xa. BMC Syst. Biol. 4 (2010)Google Scholar
  212. 217.
    W. Shyy, M.-H. Chen, R. Mittal, H.S. Udaykumar, On the suppression of numerical oscillations using a non-linear filter. J. Comput. Phys. 102, 49–62 (1992)zbMATHGoogle Scholar
  213. 218.
    L. Skjaerven, S.M. Hollup, N. Reuter, Normal mode analysis for proteins. J. Mol. Struct. THEOCHEM 898, 42–48 (2009)Google Scholar
  214. 219.
    S.A. Smith, The cell-based model of coagulation: State-of-the-Art Review. J. Vet. Emerg. Crit. Care. 19(1), 3–10 (2009)Google Scholar
  215. 220.
    D.J. Smith, M.J. Hounslow, W.R. Paterson, Aggregation and gelation - I. Analytical solutions for CST and batch operation. Chem. Eng. Sci. 49(7), 1025–1035 (1994)Google Scholar
  216. 221.
    M. V. Smoluchowski, Drei Vorträge über Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. Z. Phys. 17, 557–585 (1916)Google Scholar
  217. 222.
    J.S. Soares, J. Sheriff, D. Bluestein, A novel mathematical model of activation and sensitization of platelets subjected to dynamic stress histories. Biomech. Model. Mechanobiol. 12, 1127–1141 (2013)Google Scholar
  218. 223.
    X. Song, A.L. Throckmorton, H.G. Wood, J.F. Antaki, D.B. Olsen, Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artif. Organs 27(10), 938–941 (2003)Google Scholar
  219. 224.
    E.N. Sorensen, G.W. Burgreen, W.R. Wagner, J.F. Antaki, Computational simulation of platelet deposition and activation: I. Model development and properties. Ann. Biomed. Eng. 27(4), 436–448 (1999)Google Scholar
  220. 225.
    E.N. Sorensen, G.W. Burgreen, W.R. Wagner, J.F. Antaki, Computational simulation of platelet deposition and activation: II, results for Poiseuille flow over collagen. Ann. Biomed. Eng. 27(4), 449–458 (1999)Google Scholar
  221. 227.
    R.F. Stevens, The history of haemophilia in the royal families of europe. Br. J. Haematol. 105(1), 25–32 (1999)Google Scholar
  222. 228.
    H. Stormorken, Paul A. Owren and the Golden Era of Haemostasis (Gazettebok, Sandvika, 2001)Google Scholar
  223. 229.
    O. Taboureau, O.H. Olsen, Computational study of coagulation factor VIIa’s affinity for phospholipid membranes. Eur. Biophys. J. 36, 133–144 (2007)Google Scholar
  224. 230.
    A.A. Tokarev, Yu.V. Krasotkina, M.V. Ovanesov, M.A. Panteleev, M.A. Azhigirova, V.A. Volpert, F.I. Ataullakhanov, A.A. Butilin, Spatial dynamics of contact-activated fibrin clot formation in vitro and in silico in haemophilia b: effects of severity and ahemphil b treatment. Math. Model. Nat. Phenom. 1(2), 124–137 (2006)MathSciNetGoogle Scholar
  225. 231.
    A. Tokarev, I. Sirakov, G. Panasenko, V. Volpert, E. Shnol, A. Butylin, F. Ataullakhanov, Continuous mathematical model of platelet thrombus formation in blood flow. Russ. J. Numer. Anal. Math. Model. 27(2), 191–212 (2012)MathSciNetzbMATHGoogle Scholar
  226. 232.
    A. Tosenberger, V. Salnikov, N. Bessonov, E. Babushkina, V. Volpert, Particle dynamics methods of blood flow simulations. Math. Model. Nat. Phenom. 6(5), 320–332 (2011)MathSciNetzbMATHGoogle Scholar
  227. 233.
    A. Tosenberger, F. Ataullakhanov, N. Bessonov, M. Panteleev, A. Tokarev, V. Volpert, Modelling of thrombus growth in flow with a DPD-PDE method. J. Theor. Biol. 337, 30–41 (2013)MathSciNetGoogle Scholar
  228. 234.
    S.D. Treadwell, B. Thanvi T.G. Robinson, Stroke in pregnancy and the puerperium. Postgrad. Med. J. 84(991), 238–245 (2008)Google Scholar
  229. 235.
    A. Trousseau, Phlegmatia alba dolens, in Clinique médicale de l’Hôtel-Dieu de Paris, vol. 3 (J.B. Balliére et Fils, Paris, 1865), pp. 654–712Google Scholar
  230. 236.
    D.M.F. Van Aalten, B.L. De Groot, J.B.C. Findlay, H.J.C. Berendsen, A. Amadei, A comparison of techniques for calculating protein essential dynamics. J. Comput. Chem. 18(2), 169–181 (1997)Google Scholar
  231. 237.
    W.F. Van Gunsteren, D. Bakowies, R. Baron, I. Chandrasekhar, M. Christen, X. Daura, P. Gee, D.P. Geerke, A. Glättli, P.H. Hünenberger, M.A. Kastenholz, C. Oostenbrink, M. Schenk, D. Trzesniak, N.F.A. Van Der Vegt, H.B. Yu, Biomolecular modeling: goals, problems, perspectives. Angew. Chem. Int. Ed. 45(25), 4064–4092 (2006)Google Scholar
  232. 238.
    B.O. Villoutreix, Structural bioinformatics: methods, concepts and applications to blood coagulation proteins. Curr. Protein Pept. Sci. 3, 341–364 (2002)Google Scholar
  233. 239.
    B.O. Villoutrei, O. Sperandio, In silico studies of blood coagulation proteins: from mosaic proteases to nonenzymatic cofactor inhibitors. Curr. Opin. Struct. Biol. 20, 168–179 (2010)Google Scholar
  234. 240.
    R.L.K. Virchow, Thrombose und Embolie. Gefässentzündung und septische Infektion, in Gesammelte Abhandlungen zur wissenschaftlichen Medicin (Von Meidinger & Sohn., Frankfurt am Main, 1856), pp. 219–732Google Scholar
  235. 241.
    G.J. Wagner, W.K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition. J. Comput. Phys. 190, 249–274 (2003)zbMATHGoogle Scholar
  236. 242.
    C. Wagner, P. Steffen, S. Svetina, Aggregation of red blood cells: from rouleaux to clot formation. C. R. Phys. 14(6), 459–469 (2013)Google Scholar
  237. 243.
    F.J. Walker, P.W. Sexton, C.T. Esmon, The inhibition of blood coagulation by activated protein C through the selective inactivation of activated factor V. Biochim. Biophys. Acta 571(2), 333–342 (1979)Google Scholar
  238. 244.
    A.H. Schmaier, L.D. Dahl, A.J. Rozemuller, R.A. Roos, S.L. Wagner, R. Chung, W.E. Van Nostrand, Protease nexin-2/amyloid beta protein precursor. A tight-binding inhibitor of coagulation factor IXa. J. Clin. Invest. 92(5), 2540–2545 (1993)Google Scholar
  239. 245.
    N.-H.L. Wang, K.H. Keller, Augmented transport of extracellular solutes in concentrated erythrocyte suspensions in Couette flow. J. Colloid Interface Sci. 103(1), 210–225 (1985)Google Scholar
  240. 246.
    W. Wang, M.R. King, Multiscale modeling of platelet adhesion and thrombus growth. Ann. Biomed. Eng. 40(11), 2345–2354 (2012)Google Scholar
  241. 247.
    H. Wang, C. Junghans, K. Kremer, Comparative atomistic and coarse-grained study of water: what do we lose by coarse-graining? Eur. Phys. J. E 28, 221–229 (2009)Google Scholar
  242. 248.
    D. Wardrop, D. Keeling, The story of the discovery of heparin and warfarin. Br. J. Haematol. 141(6), 757–763 (2008)Google Scholar
  243. 249.
    F.F. Weller, Modeling, analysis, and simulation of thrombosis and hemostasis. Ph.D. thesis, Ruprecht–Karls–Universität Heidelberg, 2008Google Scholar
  244. 250.
    F.F. Weller, Platelet deposition in non-parallel flow: influence of shear stress and changes in surface reactivity. J. Math. Biol. 57(3), 333–359 (2008)MathSciNetzbMATHGoogle Scholar
  245. 251.
    F.F. Weller, A free boundary problem modeling thrombus growth: model development and numerical simulation using the level set method. J. Math. Biol. 61(6), 805–818 (2010)MathSciNetzbMATHGoogle Scholar
  246. 252.
    N.K. Wenger, Clinical characteristics of coronary heart disease in women: emphasis on gender differences. Cardiovasc. Res. 53(3), 558–567 (2002)MathSciNetGoogle Scholar
  247. 253.
    G.M. Willems, T. Lindhout, W.T. Hermens, H.C. Hemker, Simulation model for thrombin generation in plasma. Haemostasis 21(4), 197–207 (1991)Google Scholar
  248. 254.
    D.M. Wootton, C.P. Markou, S.R. Hanson, D.N. Ku, A mechanistic model of acute platelet accumulation in thrombogenic stenoses. Ann. Biomed. Eng. 29(4), 321–329 (2001)Google Scholar
  249. 255.
    I.S. Wright, Nomenclature of blood clotting factors. Can. Med. Assoc. J. 80(8), 659–661 (1959)Google Scholar
  250. 256.
    I.S. Wright, Nomenclature of blood clotting factors. Can. Med. Assoc. J. 86, 373–374 (1962)Google Scholar
  251. 257.
    J. Wu, C.K. Aidun, A method for direct simulation of flexible fiber suspensions using lattice Boltzmann equation with external boundary force. Int. J. Multiphase Flow 36, 202–209 (2010)Google Scholar
  252. 258.
    J. Wu, C.K. Aidun, Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force. Int. J. Numer. Methods Fluids 62(7), 765–783 (2010)zbMATHGoogle Scholar
  253. 259.
    J. Wu, B.M. Yun, A.M. Fallon, S.R. Hanson, C.K. Aidun, A.P Yoganathan, Numerical investigation of the effects of channel geometry on Platelet activation and blood damage. Ann. Biomed. Eng. 39(2), 897–910 (2011)Google Scholar
  254. 260.
    C.Q. Xu, Y.J. Zeng, H. Gregersen, Dynamic model of the role of platelets in the blood coagulation system. Med. Eng. Phys. 24(9), 587–593 (2002)Google Scholar
  255. 261.
    C. Xu, X.H. Xu, Y. Zeng, Y.W. Chen, Simulation of a mathematical model of the role of the TFPI in the extrinsic pathway of coagulation. Comput. Biol. Med. 35(5), 435–445 (2005)Google Scholar
  256. 262.
    Z. Xu, N. Chen, M.M. Kamocka, E.D. Rosen, M. Alber, A multiscale model of thrombus development. J. R. Soc. Interface 5, 705–722 (2008)Google Scholar
  257. 263.
    Z. Xu, N. Chen, S.C. Shadden, J.E. Marsden, M.M. Kamocka, E.D. Rosen, M. Alber, Study of blood flow impact on growth of thrombi using a multiscale model. Soft Matter 5(4), 769–779 (2009)Google Scholar
  258. 264.
    Z. Xu, J. Lioi, M. Alber, J. Mu, X. Liu, D.Z. Chen, M.M. Kamocka, E.D. Rosen, Combined experimental and simulation study of blood clot formation, in TIC-STH’09: 2009 IEEE Toronto International Conference - Science and Technology for Humanity, pp. 357–362 (2009)Google Scholar
  259. 265.
    Z. Xu, J. Lioi, J. Mu, M.M. Kamocka, X. Liu, D.Z. Chen, E.D. Rosen, M. Alber, A multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascade. Biophys. J. 98, 1723–1732 (2010)Google Scholar
  260. 266.
    Z. Xu, M. Kamocka, M. Alber, E.D. Rosen, Computational approaches to studying thrombus development. Arterioscler. Thromb. Vasc. Biol. 31, 500–505 (2011)Google Scholar
  261. 267.
    Z. Xu, O. Kim, M. Kamocka, E.D. Rosen, M. Alber, Multiscale models of thrombogenesis. Wiley Interdiscip. Rev. Syst. Biol. Med. 4(3), 237–246 (2012)Google Scholar
  262. 268.
    D. Xu, E. Kaliviotis, A. Munjiza, E. Avital, C. Ji, J. Williams, Large scale simulation of red blood cell aggregation in shear flows. J. Biomech. 46, 1810–1817 (2013)Google Scholar
  263. 269.
    T. Yamaguchi, T. Ishikawa, Y. Imai, N. Matsuki, M. Xenos, Y. Deng, D. Bluestein, Particle-based methods for multiscale modeling of blood flow in the circulation and in devices: challenges and future directions. Ann. Biomed. Eng. 38(3), 1225–1235 (2010)Google Scholar
  264. 270.
    K. Yano, D. Mori, K. Tsubota, T. Ishikawa, S. Wada, T. Yamaguchi, Analysis of destruction process of the primary thrombus under the influence of the blood flow. J. Biomech. Sci. Eng. 2(1), 34–44 (2007)Google Scholar
  265. 271.
    K.K. Yeleswarapu, J.F. Antaki, M.V. Kameneva, K.R. Rajagopal, A mathematical model for shear-induced hemolysis. Artif. Organs 19(7), 576–582 (1995)Google Scholar
  266. 272.
    M. E. Young, P. A. Carroad, R. L. Bell, Estimation of diffusion coefficients of proteins. Biotechnol. Bioeng. 22(5), 947–955 (1980)Google Scholar
  267. 273.
    V.I. Zarnitsina, A.V. Pokhilko, F.I. Ataullakhanov, A mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. I. The model description. Thromb. Res. 84(4), 225–236 (1996)Google Scholar
  268. 274.
    V.I. Zarnitsina, A.V. Pokhilko, F.I. Ataullakhanov, A mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. ii. Results. Thromb. Res. 84(5), 333–344 (1996)Google Scholar
  269. 275.
    V.I. Zarnitsina, F.I. Ataullakhanov, A.I. Lobanov, O.L. Morozova, Dynamics of spatially nonuniform patterning in the model of blood coagulation. Chaos 11(1), 57–70 (2001)zbMATHGoogle Scholar
  270. 276.
    L. Zhang, A. Gerstenberger, X. Wang, W.K. Liu, Immersed finite element method. Comput. Methods Appl. Mech. Eng. 193, 2051–2067 (2004)MathSciNetzbMATHGoogle Scholar
  271. 277.
    J. Zhang, P.C. Johnson, A.S. Popel, An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys. Biol. 4, 285–295 (2007)Google Scholar
  272. 278.
    J. Zhang, P.C. Johnson, A.S. Popel, Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method. J. Biomech. 41, 47–55 (2008)Google Scholar
  273. 279.
    R.F.A. Zwaal, P. Comfurius, E.M. Bevers, Surface exposure of phosphatidylserine in pathological cells. Cell. Mol. Life Sci. 62(9), 971–988 (2005)Google Scholar
  274. 280.
    A.L. Zydney, C.K. Colton, Augmented solute transport in the shear flow of a concentrated suspension. PCH. Physicochem. Hydrodyn. 10(1), 77–96 (1988)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Tomáš Bodnár
    • 1
    Email author
  • Antonio Fasano
    • 2
  • Adélia Sequeira
    • 3
  1. 1.Faculty of Mechanical Engineering, Department of Technical MathematicsCzech Technical University in PraguePragueCzech Republic
  2. 2.Dipartimento di Matematica “Ulisse Dini”Università degli Studi di FirenzeFlorenceItaly
  3. 3.Departamento de MatemáticaInstituto Superior TécnicoLisbonPortugal

Personalised recommendations