Harmonic Spheres Conjecture

  • Armen Sergeev
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 236)


We discuss the harmonic spheres conjecture, relating the space of harmonic maps of the Riemann sphere into the loop space of a compact Lie group G with the moduli space of Yang–Mills G-fields on four-dimensional Euclidean space.


Harmonic spheres Yang–Mills fields instantons loop spaces Atiyah theorem Donaldson theorem Hilbert–Schmidt Grassmannian 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.F. Atiayh, Instantons in two and four dimensions. Comm. Math. Phys. 93 (1984), 437–451.MathSciNetCrossRefGoogle Scholar
  2. 2.
    M.F. Atiayh, N.J. Hitchin, I.M. Singer, Self-duality in four-dimensional Riemannian geometry. Proc. Roy. Soc. London 362 (1978), 425–461.CrossRefGoogle Scholar
  3. 3.
    F.E. Burstall, S. Salamon, Tournaments, flags and harmonic maps. Math. Ann. 277 (1987), 249–265.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    S.K. Donaldson, Instantons and geometric invariant theory. Comm. Math. Phys. 93 (1984), 453–460.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. Eells, S. Salamon, Twistorial constructions of harmonic maps of surfaces into four-manifolds. Ann. Scuola Norm. Super. Pisa 12 (1985), 589–640.MathSciNetzbMATHGoogle Scholar
  6. 6.
    A. Pressley, G. Segal, Loop Groups. Clarendon Press, 1986.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteMoscowRussia

Personalised recommendations