An Adaptive POD Approximation Method for the Control of Advection-Diffusion Equations

Part of the International Series of Numerical Mathematics book series (ISNM, volume 164)


We present an algorithm for the approximation of a finite horizon optimal control problem for advection-diffusion equations. The method is based on the coupling between an adaptive POD representation of the solution and a Dynamic Programming approximation scheme for the corresponding evolutive Hamilton–Jacobi equation. We discuss several features regarding the adaptivity of the method, the role of error estimate indicators to choose a time subdivision of the problem and the computation of the basis functions. Some test problems are presented to illustrate the method.


Optimal Control Proper orthogonal decomposition Hamilton–Jacobi equations Advection-diffusion equations 

Mathematics Subject Classification (2010)

49J20 49L20 49M25 


  1. 1.
    M. Bardi, I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton–Jacobi-Bellman Equations (Birkhäuser, Basel, 1997) CrossRefGoogle Scholar
  2. 2.
    S. Cacace, E. Cristiani, M. Falcone, A. Picarelli, A patchy dynamic programming scheme for a class of Hamilton–Jacobi-Bellman equations. SIAM J. Sci. Comput. 34, 2625–2649 (2012) MathSciNetCrossRefGoogle Scholar
  3. 3.
    E. Carlini, M. Falcone, R. Ferretti, An efficient algorithm for Hamilton–Jacobi equations in high dimension. Comput. Vis. Sci. 7(1), 15–29 (2004) MathSciNetCrossRefGoogle Scholar
  4. 4.
    M. Falcone, Numerical solution of dynamic programming equations, Appendix in Optimal Control and Viscosity Solutions of Hamilton–Jacobi-Bellman Equations, ed. by M. Bardi, I. Capuzzo Dolcetta (Birkhäuser, Boston, 1997), pp. 471–504 Google Scholar
  5. 5.
    M. Falcone, R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton–Jacobi Equations (SIAM, Philadelphia, to appear) Google Scholar
  6. 6.
    M. Falcone, T. Giorgi, An approximation scheme for evolutive Hamilton–Jacobi equations, in Stochastic Analysis, Control, Optimization and Applications: A Volume in Honor of W.H. Fleming, ed. by W.M. McEneaney, G. Yin, Q. Zhang (Birkhäuser, Basel, 1999), pp. 289–303 CrossRefGoogle Scholar
  7. 7.
    K. Kunisch, S. Volkwein, Control of Burgers’ equation by a reduced order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102, 345–371 (1999) MathSciNetCrossRefGoogle Scholar
  8. 8.
    K. Kunisch, S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90, 117–148 (2001) MathSciNetCrossRefGoogle Scholar
  9. 9.
    K. Kunisch, S. Volkwein, Optimal snapshot location for computing POD basis functions. ESAIM: M2AN 44, 509–529 (2010) MathSciNetCrossRefGoogle Scholar
  10. 10.
    K. Kunisch, S. Volkwein, L. Xie, HJB-POD based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst. 4, 701–722 (2004) MathSciNetCrossRefGoogle Scholar
  11. 11.
    K. Kunisch, L. Xie, POD-based feedback control of burgers equation by solving the evolutionary HJB equation. Comput. Math. Appl. 49, 1113–1126 (2005) MathSciNetCrossRefGoogle Scholar
  12. 12.
    A.T. Patera, G. Rozza, Reduced Basis Approximation and a Posteriori Error Estimation for Parameterized Partial Differential Equations. MIT Pappalardo Graduate Monographs in Mechanical Engineering (2006) Google Scholar
  13. 13.
    M.L. Rapun, J.M. Vega, Reduced order models based on local POD plus Galerkin projection. J. Comput. Phys. 229, 3046–3063 (2010) MathSciNetCrossRefGoogle Scholar
  14. 14.
    F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications (AMS, Providence, 2010) zbMATHGoogle Scholar
  15. 15.
    S. Volkwein, Model reduction using proper orthogonal decomposition (2011).

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Università degli studi di Roma “La Sapienza”RomaItaly

Personalised recommendations