Advertisement

Some Aspects of Large Time Behavior of the Heat Kernel: An Overview with Perspectives

  • Yehuda PinchoverEmail author
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 232)

Abstract

We discuss a variety of developments in the study of large time behavior of the positive minimal heat kernel of a time-independent (not necessarily symmetric) second-order parabolic operator defined on a domain, or more generally, on a noncompact Riemannian manifold. Our attention is mainly focused on general results in general settings.

Keywords

Heat kernel Green function parabolic Martin boundary positive solutions ratio limit. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Agmon, On positivity and decay of solutions of second-order elliptic equations on Riemannian manifolds, in “Methods of Functional Analysis and Theory of Elliptic Equations”, pp. 19–52, (ed. D. Greco), Liguori, Naples, 1983.Google Scholar
  2. [2]
    S. Agmon, private communication.Google Scholar
  3. [3]
    A. Ancona, First eigenvalues and comparison of Green’s functions for elliptic operators on manifolds or domains, J. Anal. Math. 72 (1997), 45–92.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    J.-P. Anker, P. Bougerol, and T. Jeulin, The infinite Brownian loop on symmetric space, Rev. Mat. Iberoamericana 18 (2002), 41–97.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    W. Arendt, and C.J.K. Batty, Exponential stability of a diffusion equation with absorption, Differential Integral Equations 6 (1993), 1009–1024.zbMATHMathSciNetGoogle Scholar
  6. [6]
    D.G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 607–694.Google Scholar
  7. [7]
    R. Bañuelos, and B. Davis, Heat kernel, eigenfunctions, and conditioned Brownian motion in planner domains, J. Funct. Anal. 84 (1989), 188–200.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    N.H. Bingham, C.M. Goldie, and J.L. Teugels, “Regular Variation”, Encyclopedia of Mathematics and its Applications 27, Cambridge University Press, Cambridge, 1989.Google Scholar
  9. [9]
    K. Burdzy and T.S. Salisbury, On minimal parabolic functions and time-homogeneous parabolic -transforms, Trans. Amer. Math. Soc. 351 (1999), 3499–3531.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    O. Calin, D.C. Chang, K. Furutani, and C. Iwasaki, “Heat kernels for elliptic and sub-elliptic operators, Methods and techniques”, Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York, 2011.zbMATHCrossRefGoogle Scholar
  11. [11]
    I. Chavel, “Isoperimetric Inequalities. Differential Geometric and Analytic Perspectives”, Cambridge Tracts in Mathematics 145, Cambridge University Press, Cambridge, 2001.Google Scholar
  12. [12]
    I. Chavel and L. Karp, Large time behavior of the heat kernel: the parabolic λ- potential alternative, Comment. Math. Helv. 66 (1991), 541–556.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    K.L. Chung, “Markov Chains with Stationary Transition Probabilities” 2nd ed., Grundlehren der mathematischen Wissenschaften, 104, Springer-Verlag, New York, 1967.Google Scholar
  14. [14]
    P. Collet, S. Martínez, and J. San Martín, Ratio limit theorems for a Brownian motion killed at the boundary of a Benedicks domain, Ann. Probab., 27 (1999), 1160–1182.zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    P. Collet, Asymptotic of the heat kernel in general Benedicks domains, Probab. Theory Related Fields 125 (2003), 350–364.Google Scholar
  16. [16]
    C. Constantinescu, and A. Cornea, “Potential Theory on Harmonic Spaces”, Grundlehren der Mathematischen Wissenschaften 158, Springer-Verlag, New York- Heidelberg, 1972.Google Scholar
  17. [17]
    T. Coulhon, Heat kernels on non-compact Riemannian manifolds: a partial survey, in “Séminaire de Théorie Spectrale et Géométrie”, pp. 167–187, Sémin. Théor. Spectr. Géom. 15, Univ. Grenoble I, Saint-Martin-d’HÈres, 1997.Google Scholar
  18. [18]
    T. Coulhon, Large time behaviour of heat kernels on Riemannian manifolds: fast and slow decays, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1998), Exp. No. II, 12 pp., Univ. Nantes, Nantes, 1998.Google Scholar
  19. [19]
    T. Coulhon, and A. Grigor’yan, On-diagonal lower bounds for heat kernels on noncompact manifolds and Markov chains, Duke Math. J. 89 (1997), 133–199.Google Scholar
  20. [20]
    E.B. Davies, “Heat Kernels and Spectral Theory”, Cambridge Tracts in Mathematics 92, Cambridge University Press, Cambridge, 1990.Google Scholar
  21. [21]
    E.B. Davies, Heat kernel bounds, conservation of probability and the Feller property, J. Anal. Math. 58 (1992), 99–119.Google Scholar
  22. [22]
    E.B. Davies, Non-Gaussian aspects of heat kernel behaviour, J. London Math. Soc. (2) 55 (1997), 105–125.Google Scholar
  23. [23]
    J.L. Doob, “Classical potential theory and its probabilistic counterpart”, Grundlehren der Mathematischen Wissenschaften 262, Springer-Verlag, New York, 1984.CrossRefGoogle Scholar
  24. [24]
    M. Fraas, D. Krejčiřík, and Y. Pinchover, On some strongr atio limit theorems for heat kernels, Disc. Contin. Dyn. Syst. 28 (2010), 495–509.zbMATHCrossRefGoogle Scholar
  25. [25]
    A. Grigor’yan, Estimates of heat kernels on Riemannian manifolds, in “Spectral Theory and Geometry”, pp. 140–225, London Math. Soc. Lecture Note Ser. 273, Cambridge Univ. Press, Cambridge, 1999.Google Scholar
  26. [26]
    A. Grigor’yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. 36 (1999), 135– 249.Google Scholar
  27. [27]
    A. Grigor’yan, “Heat Kernel and Analysis on Manifolds”, AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society, Providence, RI, International Press, Boston, MA, 2009.Google Scholar
  28. [28]
    A. Grigor’yan, and L. Saloff-Coste, Heat kernel on manifolds with ends, Ann. Inst. Fourier (Grenoble) 59 (2009), 1917–1997.Google Scholar
  29. [29]
    R.Z. Has’minski\( \mathrm{\breve{i}} \), “Stochastic Stability of Differential Equations”, Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980.Google Scholar
  30. [30]
    K. Ishige, and M. Murata, Uniqueness of nonnegative solutions of the Cauchy problem for parabolic equations on manifolds or domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), 171–223.Google Scholar
  31. [31]
    P. Li, Large time behavior of the heat equation on complete manifolds with nonnegative Ricci curvature, Ann. of Math. (2) 124 (1986), 1–21.Google Scholar
  32. [32]
    M. Keller, D. Lenz, H. Vogt, and R. Wojciechowski, Note on basic features of large time behaviour of heat kernels. arXiv: 1101.0373.Google Scholar
  33. [33]
    J.F.C. Kingman, Ergodic properties of continuous-time Markov processes and their discrete skeletons, Proc. London Math. Soc. (3) 13 (1963), 593–604.Google Scholar
  34. [34]
    W. Kirsch, and B. Simon, Approach to equilibrium for a forced Burgers equation, J. Evol. Equ. 1 (2001), 411–419.zbMATHMathSciNetCrossRefGoogle Scholar
  35. [35]
    G. Kozma, A graph counterexample to Davies’ conjecture. arXiv:1111.4593.Google Scholar
  36. [36]
    D. Krejčiřík, and E. Zuazua, The Hardy inequality and the heat equation in twisted tubes, J. Math. Pures Appl. (9) 94 (2010), 277–303.Google Scholar
  37. [37]
    P. Li, “Geometric Analysis” (Cambridge Studies in Advanced Mathematics; 134), Cambridge University Press, Cambridge, 2012.Google Scholar
  38. [38]
    V. Lin and Y. Pinchover, Manifolds with group actions and elliptic operators, Memoirs Amer. Math. Soc. 112, (1994), 1–78.MathSciNetCrossRefGoogle Scholar
  39. [39]
    V. Liskevich, and Y. Semenov, Two-sided estimates of the heat kernel of the Schrödinger operator, Bull. London Math. Soc., 30 (1998), 596–602.zbMATHMathSciNetCrossRefGoogle Scholar
  40. [40]
    P.D. Milman, and Yu. A. Semenov, Heat kernel bounds and desingularizing weights, J. Funct. Anal., 202 (2003), 1–24.zbMATHMathSciNetCrossRefGoogle Scholar
  41. [41]
    M. Murata, Positive solutions and large time behaviors of Schrödinger semigroups, Simon’s problem, J. Funct. Anal., 56 (1984), 300–310.zbMATHMathSciNetCrossRefGoogle Scholar
  42. [42]
    M. Murata, Structure of positive solutions to (Δ+V )u = 0 in ℝn, Duke Math. J. 53 (1986), 869–943.Google Scholar
  43. [43]
    M. Murata, Semismall perturbations in the Martin theory for elliptic equations, Israel J. Math., 102 (1997), 29–60.Google Scholar
  44. [44]
    M. Murata, Martin boundaries of elliptic skew products, semismall perturbations, and fundamental solutions of parabolic equations, J. Funct. Anal. 194 (2002), 53–141.Google Scholar
  45. [45]
    M. Murata, Integral representations of nonnegative solutions for parabolic equations and elliptic Martin boundaries, J. Funct. Anal. 245 (2007), 177–212.Google Scholar
  46. [46]
    Y. Pinchover, Criticality and ground states for second-order elliptic equations, J. Differential Equations, 80 (1989), 237–250.zbMATHMathSciNetCrossRefGoogle Scholar
  47. [47]
    Y. Pinchover, On criticality and ground states of second-order elliptic equations. II, J. Differential Equations 87 (1990), 353–364.Google Scholar
  48. [48]
    Y. Pinchover, Large time behavior of the heat kernel and the behavior of the Green function near criticality for nonsymmetric elliptic operators, J. Funct. Anal. 104 (1992), 54–70.Google Scholar
  49. [49]
    Y. Pinchover, On nonexistence of any λ 0-invariant positive harmonic function, a counterexample to Stroock’s conjecture, Comm. Partial Differential Equations 20 (1995), 1831–1846.Google Scholar
  50. [50]
    Y. Pinchover, Maximum and anti-maximum principles and eigenfunctions estimates via perturbation theory of positive solutions of elliptic equations, Math. Ann., 314 (1999), 555–590.Google Scholar
  51. [51]
    Y. Pinchover, Large time behavior of the heat kernel, J. Funct. Anal. 206 (2004), 191–209.Google Scholar
  52. [52]
    Y. Pinchover, On Davies’ conjecture and strongra tio limit properties for the heat kernel, in “Potential Theory in Matsue”, Proceedings of the International Workshop on Potential Theory, 2004, pp. 339–352, (eds. H. Aikawa, et al.), Advanced Studies in Pure Mathematics 44, Mathematical Society of Japan, Tokyo, 2006.Google Scholar
  53. [53]
    Y. Pinchover, A Liouville-type theorem for Schrödinger operators, Comm. Math. Phys., 272 (2007), 75–84.Google Scholar
  54. [54]
    R.G. Pinsky, “Positive Harmonic Function and Diffusion”, Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
  55. [55]
    F.O. Porper, and S.D. Èǐdel man, Two-sided estimates of the fundamental solutions of second-order parabolic equations and some applications of them, Uspekhi Mat. Nauk 39 (1984), 107–156.Google Scholar
  56. [56]
    V.C. Repnikov, S.D. Èǐdelman, Necessary and sufficient conditions for establishing a solution to the Cauchy problem, Soviet Math. Dokl. 7 (1966), 388–391.Google Scholar
  57. [57]
    D.W. Robinson, “Elliptic Operators and Lie Groups”, Oxford Mathematical Monographs, Oxford University Press, New York, 1991.zbMATHGoogle Scholar
  58. [58]
    B. Simon, “Functional integration and quantum physics”, Pure and Applied Mathematics, 86, Academic Press, Inc., New York-London, 1979.Google Scholar
  59. [59]
    B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447–526.Google Scholar
  60. [60]
    B. Simon, Large time behavior of the heat kernel: on a theorem of Chavel and Karp, Proc. Amer. Math. Soc. 118 (1993), 513–514.Google Scholar
  61. [61]
    U. Stadtmüller, and R. Trautner, Ratio Tauberian theorems for Laplace transforms without monotonicity assumptions, Quart. J. Math. Oxford Ser. (2) 36 (1985), 363– 381.Google Scholar
  62. [62]
    S.R.S. Varadhan, “Lectures on Diffusion Problems and Partial Differential Equations”, Tata Institute of Fundamental Research 64, Springer-Verlag, Berlin, 1980.Google Scholar
  63. [63]
    N.Th. Varopoulos, L. Saloff-Coste, and T. Coulhon, “Analysis and Geometry on Groups”, Cambridge Tracts in Mathematics 100, Cambridge University Press, Cambridge, 1992.Google Scholar
  64. [64]
    W. Woess, “Random Walks on Infinite Graphs and Groups”, Cambridge Tracts in Mathematics 138, Cambridge University Press, Cambridge, 2000.CrossRefGoogle Scholar
  65. [65]
    K.Wong, Large time behavior of Dirichlet heat kernels on unbounded domains above the graph of a bounded Lipschitz function, Glas. Mat. Ser. III 41 (61) (2006), 177– 186.zbMATHMathSciNetCrossRefGoogle Scholar
  66. [66]
    Q.S. Zhang, Large time behavior of Schrödinger heat kernels and applications, Comm. Math. Phys. 210 (2000), 371–398.zbMATHMathSciNetCrossRefGoogle Scholar
  67. [67]
    Q.S. Zhang, A sharp comparison result concerningSc hrödinger heat kernels, Bull. London Math. Soc., 35 (2003), 461–472.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of MathematicsTechnion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations