Elliptic Theory for Operators Associated with Diffeomorphisms of Smooth Manifolds
Conference paper
First Online:
- 4 Citations
- 970 Downloads
Abstract
In this paper we give a survey of elliptic theory for operators associated with diffeomorphisms of smooth manifolds. Such operators appear naturally in analysis, geometry and mathematical physics. We survey classical results as well as results obtained recently. The paper consists of an introduction and three sections. In the introduction we give a general overview of the area of research. For the reader’s convenience here we tried to keep special terminology to a minimum. In the remaining sections we give detailed formulations of the most important results mentioned in the introduction.
Keywords
Elliptic operator index index formula cyclic cohomology diffeomorphism G-operator.Preview
Unable to display preview. Download preview PDF.
References
- [1]A. Antonevich, M. Belousov, and A. Lebedev, Functional differential equations II C ∗ -applications, Parts 1, 2, Number 94, 95 in Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman, Harlow, 1998.Google Scholar
- [2]A. Antonevich and A. Lebedev, Functional-Differential Equations I C ∗ -Theory, Number 70 in Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman, Harlow, 1994.Google Scholar
- [3]A.B. Antonevich. Elliptic pseudodifferential operators with a finite group of shifts, Math. USSR-Izv., 7 (1973), 661–674.CrossRefGoogle Scholar
- [4]A.B. Antonevich, Linear Functional Equations, Operator Approach, Universitetskoje, Minsk, 1988.Google Scholar
- [5]A.B. Antonevich, Strongly nonlocal boundary value problems for elliptic equations, Izv. Akad. Nauk SSSR Ser. Mat., 53(1) (1989), 3–24.MathSciNetGoogle Scholar
- [6]A.B. Antonevich and V.V. Brenner, On the symbol of a pseudodifferential operator with locally independent shifts, Dokl. Akad. Nauk BSSR, 24(10) (1980), 884–887.MathSciNetzbMATHGoogle Scholar
- [7]A.B. Antonevich and A.V. Lebedev, Functional equations and functional operator equations A C ∗- algebraic approach, in Proceedings of the St. Petersburg Mathematical Society, Vol. VI, Amer. Math. Soc. Transl. Ser. 2 199, 2000, 25–116.Google Scholar
- [8]M.F. Atiyah. Elliptic Operators and Compact Groups, Lecture Notes in Mathematics 401, Springer-Verlag, Berlin, 1974.Google Scholar
- [9]M.F. Atiyah. K-Theory, Second Edition, The Advanced Book Program, Addison– Wesley, Inc., 1989.Google Scholar
- [10]M.F. Atiyah and G.B. Segal, The index of elliptic operators II, Ann. Math. 87 (1968), 531–545.MathSciNetzbMATHCrossRefGoogle Scholar
- [11]M.F. Atiyah and I.M. Singer, The index of elliptic operators on compact manifolds, Bull. Amer. Math. Soc. 69 (1963), 422–433.MathSciNetzbMATHCrossRefGoogle Scholar
- [12]M.F. Atiyah and I.M. Singer, The index of elliptic operators III, Ann. Math. 87 (1968), 546–604.MathSciNetzbMATHCrossRefGoogle Scholar
- [13]Ch. Babbage. An assay towards the calculus of functions, part II, Philos. Trans. of the Royal Society 106 (1816), 179–256.CrossRefGoogle Scholar
- [14]P. Baum and A. Connes, Chern character for discrete groups, in A fˆete of topology, Academic Press, Boston, MA, 1988, 163–232.Google Scholar
- [15]A.V. Bitsadze and A.A. Samarskii, On some simple generalizations of linear elliptic boundary problems, Sov. Math., Dokl. 10 (1969), 398–400.Google Scholar
- [16]B. Blackadar, K-Theory for Operator Algebras, Second Edition, Mathematical Sciences Research Institute Publications 5, Cambridge University Press, 1998.Google Scholar
- [17]T. Carleman, Sur la théorie des équations intégrales et ses applications, Verh. Internat. Math.-Kongr. Zurich. 1, 1932, 138–151.Google Scholar
- [18]P.E. Conner and E.E. Floyd, Differentiable Periodic Maps, Academic Press, New York, 1964.Google Scholar
- [19]A. Connes, C ∗ -algèbres et géométrie différentielle, C. R. Acad. Sci. Paris Sér. A-B 290(13) (1980), A599–A604.MathSciNetGoogle Scholar
- [20]A. Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 257–360.MathSciNetGoogle Scholar
- [21]A. Connes, Cyclic cohomology and the transverse fundamental class of a foliation, in Geometric Methods in Operator Algebras, Pitman Res. Notes in Math. 123, Longman, Harlow, 1986.Google Scholar
- [22]A. Connes, Noncommutative Geometry, Academic Press Inc., San Diego, CA, 1994.Google Scholar
- [23]A. Connes and M. Dubois-Violette, Noncommutative finite-dimensional manifolds I, spherical manifolds and related examples, Comm. Math. Phys. 230(3) (2002), 539– 579.MathSciNetzbMATHCrossRefGoogle Scholar
- [24]A. Connes and G. Landi, Noncommutative manifolds, the instanton algebra and isospectral deformations, Comm. Math. Phys. 221(1) (2001), 141–159.MathSciNetzbMATHCrossRefGoogle Scholar
- [25]A. Connes and H. Moscovici, Type III and spectral triples, in Traces in Number Theory, Geometry and Quantum Fields, Aspects Math., E38, Friedr. Vieweg, Wiesbaden, 2008, 57–71.Google Scholar
- [26]I.M. Gelfand, On elliptic equations, Russian Math. Surveys 15(3) (1960), 113–127.MathSciNetCrossRefGoogle Scholar
- [27]A. Gorokhovsky, Characters of cycles, equivariant characteristic classes and Fredholm modules, Comm. Math. Phys. 208(1) (1999), 1–23.MathSciNetzbMATHCrossRefGoogle Scholar
- [28]M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53–73.MathSciNetzbMATHCrossRefGoogle Scholar
- [29]A. Jaffe, A. Lesniewski, and K. Osterwalder, Quantum K-theory I. The Chern character, Comm. Math. Phys. 118(1) (1988), 1–14.Google Scholar
- [30]T. Kawasaki, The index of elliptic operators over V -manifolds, Nagoya Math. J. 84 (1981), 135–157.MathSciNetzbMATHGoogle Scholar
- [31]Yu.A. Kordyukov, Transversally elliptic operators on G-manifolds of bounded geometry, Russian J. Math. Phys. 2(2) (1994), 175–198.MathSciNetzbMATHGoogle Scholar
- [32]Yu.A. Kordyukov, Transversally elliptic operators on G-manifolds of bounded geometry II, Russian J. Math. Phys. 3(1) (1995), 41–64.MathSciNetzbMATHGoogle Scholar
- [33]Yu.A. Kordyukov, Index theory and non-commutative geometry on foliated manifolds, Russ. Math. Surv. 64(2) (2009), 273–391.MathSciNetzbMATHCrossRefGoogle Scholar
- [34]G. Landi and W. van Suijlekom, Principal fibrations from noncommutative spheres, Comm. Math. Phys. 260(1) (2005), 203–225.MathSciNetzbMATHCrossRefGoogle Scholar
- [35]G. Luke, Pseudodifferential operators on Hilbert bundles, J. Diff. Equations 12 (1972), 566–589.MathSciNetzbMATHCrossRefGoogle Scholar
- [36]A.S. Mishchenko and A.T. Fomenko, The index of elliptic operators over C ∗ -algebras, Izv. Akad. Nauk SSSR Ser. Mat. 43(4) (1979), 831–859, 967.Google Scholar
- [37]H. Moscovici, Local index formula and twisted spectral triples, in Quanta of Maths, Clay Math. Proc. 11, Amer. Math. Soc., Providence, RI, 2010, 465–500.Google Scholar
- [38]V.E. Nazaikinskii, A.Yu. Savin, and B.Yu. Sternin, Elliptic Theory and Noncommutative Geometry, Operator Theory: Advances and Applications 183, Birkhäuser Verlag, Basel, 2008.Google Scholar
- [39]E. Park, Index theory of Toeplitz operators associated to transformation group C ∗ - algebras, Pacific J. Math. 223(1) (2006), 159–165.MathSciNetzbMATHCrossRefGoogle Scholar
- [40]A.L.T. Paterson, Amenability, Mathematical Surveys and Monographs 29, American Mathematical Society, Providence, RI, 1988.Google Scholar
- [41]G.K. Pedersen, C ∗ -Algebras and Their Automorphism Groups, London Mathematical Society Monographs 14, Academic Press, London–New York, 1979.Google Scholar
- [42]D. Perrot. A Riemann-Roch theorem for one-dimensional complex groupoids. Comm. Math. Phys., 218(2):373–391, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
- [43]D. Perrot, Localization over complex-analytic groupoids and conformal renormalization, J. Noncommut. Geom. 3(2) (2009), 289–325.MathSciNetzbMATHCrossRefGoogle Scholar
- [44]D. Perrot, On the Radul cocycle, Oberwolfach reports (2011), 53–55. DOI: 10.4171/OWR/2011/45.
- [45]L.E. Rossovskii, Boundary value problems for elliptic functional-differential equations with dilatation and contraction of the arguments, Trans. Moscow Math. Soc. (2001), 185–212.Google Scholar
- [46]A. Savin, E. Schrohe, and B. Sternin, On the index formula for an isometric diffeomorphism, arXiv:1112.5515, 2011.Google Scholar
- [47]A. Savin, E. Schrohe, and B. Sternin, Uniformization and an index theorem for elliptic operators associated with diffeomorphisms of a manifold, arXiv:1111.1525, 2011.Google Scholar
- [48]A. Savin and B. Sternin, Index defects in the theory of nonlocal boundary value problems and the η-invariant, Sbornik: Mathematics 195(9) (2004), 1321–1358.MathSciNetzbMATHCrossRefGoogle Scholar
- [49]A. Savin and B. Sternin, Index of elliptic operators for a diffeomorphism. Journal of Noncommutative Geometry, V. 7, 2013. Preliminary Version: arxiv:1106.4195, 2011.Google Scholar
- [50]A.Yu. Savin, On the index of nonlocal elliptic operators for compact Lie groups, Cent. E ur. J. Math. 9(4) (2011), 833–850.MathSciNetzbMATHCrossRefGoogle Scholar
- [51]A.Yu. Savin, On the index of nonlocal operators associated with a nonisometric diffeomorphism, Mathematical Notes 90(5) (2011), 701–714.MathSciNetCrossRefGoogle Scholar
- [52]A.Yu. Savin, On the symbol of nonlocal operators in Sobolev spaces, Differential Equations, 47(6) (2011), 897–900.MathSciNetzbMATHCrossRefGoogle Scholar
- [53]A.Yu. Savin and B.Yu. Sternin, Index of nonlocal elliptic operators over C ∗ -algebras, Dokl. Math. 79(3) (2009), 369–372.Google Scholar
- [54]A.Yu. Savin and B.Yu. Sternin, Noncommutative elliptic theory. Examples, Proceedings of the Steklov Institute of Mathematics 271 (2010), 193–211.Google Scholar
- [55]A.Yu. Savin and B.Yu. Sternin, Nonlocal elliptic operators for compact Lie groups, Dokl. Math. 81(2) (2010), 258–261.Google Scholar
- [56]A.Yu. Savin. On the index of elliptic operators associated with a diffeomorphism of a manifold, Doklady Mathematics 82(3) (2010), 884–886.Google Scholar
- [57]A.Yu. Savin and B.Yu. Sternin. On the index of noncommutative elliptic operators over C ∗-algebras, Sbornik: Mathematics 201(3) (2010), 377–417.Google Scholar
- [58]A.Yu. Savin and B.Yu. Sternin, Nonlocal elliptic operators for the group of dilations, Sbornik: Mathematics 202(10) (2011), 1505–1536.Google Scholar
- [59]A.Yu. Savin, B.Yu. Sternin, and E. Schrohe. Index problem for elliptic operators associated with a diffeomorphism of a manifold and uniformization, Dokl. Math. 84(3) (2011), 846–849.MathSciNetzbMATHCrossRefGoogle Scholar
- [60]L.B. Schweitzer, Spectral invariance of dense subalgebras of operator algebras, Internat. J. Math. 4(2) (1993), 289–317.MathSciNetzbMATHCrossRefGoogle Scholar
- [61]I.M. Singer, Recent applications of index theory for elliptic operators, in Partial Differential Equations, Proc. Sympos. Pure Math., Vol. XXIII, Amer. Math. Soc., Providence, R.I., 1973, 11–31.Google Scholar
- [62]A.L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Birkhäuser, Basel-Boston-Berlin, 1997.Google Scholar
- [63]A.L. Skubachevskii, Nonclassical boundary-value problems I, Journal of Mathematical Sciences 155(2) (2008), 199–334.MathSciNetzbMATHCrossRefGoogle Scholar
- [64]A.L. Skubachevskii, Nonclassical boundary-value problems II, Journal of Mathematical Sciences 166(4) (2010), 377–561.MathSciNetCrossRefGoogle Scholar
- [65]J. Slominska, On the equivariant Chern homomorphism, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys., 24 (1976), 909–913.Google Scholar
- [66]B.Yu. Sternin, On a class of nonlocal elliptic operators for compact Lie groups. Uniformization and finiteness theorem, Cent. E ur. J. Math. 9(4) (2011), 814–832.Google Scholar
- [67]M. Vergne, Equivariant index formulas for orbifolds, Duke Math. J. 82(3) (1996), 637–652.MathSciNetzbMATHCrossRefGoogle Scholar
- [68]D.P. Williams, Crossed Products of C ∗ -Algebras, Mathematical Surveys and Monographs 134, American Mathematical Society, Providence, RI, 2007.Google Scholar
- [69]G. Zeller-Meier, Produits croisés d’une C ∗ -algèbre par un groupe d’automorphismes, J. Math. Pures Appl. 47(9) (1968), 101–239.MathSciNetzbMATHGoogle Scholar
Copyright information
© Springer Basel 2013