Overview of Fractional h-difference Operators

Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 229)

Abstract

Fractional difference operators and their properties are discussed. We give a characterization of three operators that we call Grünwald-Letnikov, Riemann-Liouville and Caputo like difference operators. We show relations among them. In the paper, linear fractional h-difference equations are described. We give formulas of solutions to initial value problems. Crucial formulas are gathered in the tables presented in the last section of the paper.

Keywords

Fractional difference operator fractional difference equation fractional derivative. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Abdeljawad, On Riemann and Caputo fractional differences. Comput. Math. Appl. 62 (3) (2011), 1602–1611.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    T. Abdeljawad, D. Baleanu, Fractional differences and integration by parts. J. Comput. Anal. Appl. 13 (3) (2011), 574–582.MathSciNetMATHGoogle Scholar
  3. [3]
    O.P. Agrawal, D. Baleanu. A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J. Vib. Control 13 (9–10) (2007), 1269–1281.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    G.A. Anastassiou, Fractional Differentiation Inequalities, Research Monograph, Springer, New York 2009.Google Scholar
  5. [5]
    F.M. Atici, P.W. Eloe, Initial value problems in discrete fractional calculus. Proc. Amer. Math. Soc. 137 (3) (2008), 981–989.MathSciNetCrossRefGoogle Scholar
  6. [6]
    F.M. Atici, P.W. Eloe, A Transform Method in Discrete Fractional Calculus. Int. J. Difference Equ. 2 (2007), 165–176.MathSciNetGoogle Scholar
  7. [7]
    D. Baleanu, New applications of fractional variational principles. Rep. Math. Phys. 61 (2) (2008), 199–206.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Method. World Scientific Publishing, New York 2012.Google Scholar
  9. [9]
    N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete Contin. Dyn. Syst. 29 (2) (2011), 417–437.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    J. Čermák, T. Kisela, L. Nechvátal, Discrete Mittag-Leffler functions in linear fractional difference equations. Abst. Appl. Anal. (2011), 1–21.Google Scholar
  11. [11]
    F. Chen, X. Luo, Y. Zhou, Existence results for nonlinear fractional difference equation. Advances in Difference Eq. article ID 713201, 12 p., doi: 10.1155/2011/713201 2011.
  12. [12]
    R.A.C. Ferreira, D.F.M. Torres, Fractional h-difference equations arising from the calculus of variations. Appl. Anal. Discrete Math. 5 (1) (2011), 110–121.MathSciNetCrossRefGoogle Scholar
  13. [13]
    M.T. Holm, The theory of discrete fractional calculus: Development and application. University of Nebraska – Lincoln 2011.Google Scholar
  14. [14]
    T. Kaczorek, Positive 1D and 2D Systems Springer-Verlag, London 2002.Google Scholar
  15. [15]
    J. Klamka, Controllability of nonlinear discrete systems. Int. J. Appl. Math. Comput. Sci. 12 (2) (2002), 173–180.MathSciNetMATHGoogle Scholar
  16. [16]
    K.S. Miller, B. Ross, Fractional difference calculus. Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and their Applications, Nihon University, Kōriyama, Japan (1989), 139–152.Google Scholar
  17. [17]
    K.S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations Wiley, New York 1993.Google Scholar
  18. [18]
    M.D. Ortigueira, Fractional central differences and derivatives. J. Vib. Control 14 (9–10) (2008), 1255–1266.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    P. Ostalczyk, The non-integer difference of the discrete time function and its application to the control system synthesis. Int. J. Syst. Sci. 31 (12) (2000), 1551–1561.MATHCrossRefGoogle Scholar
  20. [20]
    I. Podlubny, Fractional Differential Equations. AP, New York, NY 1999.Google Scholar
  21. [21]
    S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives. Translated from the 1987 Russian original, Gordon and Breach, Yverdon 1993.Google Scholar
  22. [22]
    D. Sierociuk, D. Dzieliński, Fractional Kalman filter algorithm for the states parameters and order of fractional system estimation. Int. J. Appl. Math. Comp. Sci. 16 (1) (2006), 129–140.Google Scholar
  23. [23]
    M.F. Silva, J.A. Tenreiro Machado, R.S. Barbosa, Using fractional derivatives in joint control of hexapod robots. J. Vib. Control 14 (9–10) (2008), 1473–1485.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Faculty of Computer ScienceBiałystok University of TechnologyBiałystokPoland

Personalised recommendations