Advertisement

Bogdan Mielnik: Contributions to Quantum Control

  • David J. Fernández C.
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

In this article two main aspects of quantum control, which require basically different mathematical techniques will be addressed. In the first one the systems are characterized by stationary Hamiltonians, while in the second they are ruled by time-dependent ones. Both trends were initiated in Mexico by Bogdan Mielnik, who has played a central role in the development of a research group on quantum control at Cinvestav.

Keywords

Quantum control Factorization method Supersymmetric quantum mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Mielnik, Analytic functions of the displacement operator, PhD Thesis, Cinvestav, 1964.Google Scholar
  2. 2.
    B. Mielnik, Hermitean matrices in spaces with indefinite scalar product, Report Cinvestav, Mexico, 1965.Google Scholar
  3. 3.
    I. Bialynicki-Birula, B. Mielnik, J. Plebański, Explicit solution to the continuous Baker-Campbell-Haussdorff problem and a new expansion of the phase operator, Ann. Phys. 51 (1969) 187–200.CrossRefGoogle Scholar
  4. 4.
    B. Mielnik, J. Plebański, Combinatorial approach to Baker-Campbell-Haussdorff formula, Ann. Inst. H. Poincaré 12 (1970) 215–254.MATHGoogle Scholar
  5. 5.
    B. Mielnik, Geometry of quantum states, Commun. Math. Phys. 9 (1968) 55–80.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    B. Mielnik, Theory of filters, Commun. Math. Phys. 15 (1969) 1–46.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    B. Mielnik, Generalized quantum mechanics, Commun. Math. Phys. 31 (1974) 221– 256.MathSciNetCrossRefGoogle Scholar
  8. 8.
    B. Mielnik, Quantum logic: Is it necessarily orthocomplemented?, in Quantum Mechanics, Determinism, Causality and Particles, M. Flato et al., eds., Reidel, Holland (1976) 117–135.Google Scholar
  9. 9.
    B. Mielnik, Mobility of nonlinear systems, J. Math. Phys. 21 (1980) 44–54.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    B. Mielnik, Göran Tengstrand, Nelson-Brown Motion: Some Question Marks, Int. J. Theor. Phys. 19 (1980) 239–250.CrossRefMATHGoogle Scholar
  11. 11.
    B. Mielnik, Convex sets: non-linear quantization, in Proceedings of the International Symposium on Mathematical Physics, A. Bohm et al., eds., México (1976) 355–366.Google Scholar
  12. 12.
    B. Mielnik, Mobility and geometry, in Relativity and Gravitation. Proceedings of the Third Latin-American Symposium, S. Hojman et al., eds., UNAM, México (1982) 231–239.Google Scholar
  13. 13.
    B. Mielnik, Phenomenon of Mobility in Non-Linear Theories, Commun. Math. Phys. 101 (1985) 323–339.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    B. Mielnik, Factorization method and new potentials with the oscillator spectrum, J. Math. Phys. 25 (1984) 3387–3389.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    B. Mielnik, O. Rosas-Ortiz, Factorization: little or great algorithm?, J. Phys. A: Math. Gen. 37 (2004) 10007–10035.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    D.J. Fernández, V. Hussin, B. Mielnik, A simple generation of exactly solvable anharmonic oscillators, Phys. Lett. A 244 (1998) 309–316.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    B. Mielnik, L.M. Nieto, O. Rosas-Ortiz, The finite difference algorithm for higher order supersymmetry, Phys. Lett. A 269 (2000) 70–78.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    D.J. Fernández, B. Mielnik, O. Rosas-Ortiz, B.F. Samsonov, The phenomenon of Darboux displacements, Phys. Lett. A 294 (2002) 168–174.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    D.J. Fernández, B. Mielnik, O. Rosas-Ortiz, B.F. Samsonov, Nonlocal supersymmetric deformations of periodic potentials, J. Phys. A:Math. Gen. 35 (2002) 4279–4291.CrossRefMATHGoogle Scholar
  20. 20.
    B. Mielnik, Global mobility of Schrödinger’s particle, Rep. Math. Phys. 12 (1977) 331–339.MathSciNetCrossRefGoogle Scholar
  21. 21.
    B. Mielnik, Space echo, Lett. Math. Phys. 12 (1986) 49–56.MathSciNetCrossRefGoogle Scholar
  22. 22.
    B. Mielnik, Evolution loops, J. Math. Phys. 27 (1986) 2290–2306.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    B. Mielnik, D.J. Fernández, Operational Techniques for the Floquet Hamiltonians, in Proceedings of the 39th IEEE Conference on Decision and Control, Causal Productions, Australia (2000) 961–967.Google Scholar
  24. 24.
    B. Mielnik, A. Ramírez, Magnetic operations: a little fuzzy mechanics?, Phys. Scr. 84 (2011) 045008.CrossRefGoogle Scholar
  25. 25.
    B. Mielnik, D.J. Fernández, An electron trapped in a rotating magnetic field, J. Math. Phys. 30 (1989) 537–549.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    B. Mielnik, D.J. Fernández, Is there an instability transition in standing wave traps?, Lett. Math. Phys. 17 (1989) 87–94.MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    D.J. Fernández, B. Mielnik, Nodal resonance in a strong standing wave, Phys. Rev. A 41 (1990) 5788–5797.MathSciNetCrossRefGoogle Scholar
  28. 28.
    D.J. Fernández, B. Mielnik, Comment on “Charged particles in a rotating magnetic field”, Phys. Rev. A 65 (2002) 056101.CrossRefGoogle Scholar
  29. 29.
    D.J. Fernández, Electrón de Schrödinger en campos electromagnéticos oscilantes: nuevas soluciones exactas y sus implicaciones para resonancia semiclásica, PhDThesis, Cinvestav, 1988.Google Scholar
  30. 30.
    D.J. Fernández, B. Mielnik, Controlling quantum motion, J. Math. Phys. 35 (1994) 2083–2104.MathSciNetCrossRefGoogle Scholar
  31. 31.
    B. Mielnik, Hunting George Gamow Gazelle, in Particles and Fields, H.D. Doebner et al Eds., World Scientific, Singapore (1993) 245–264.Google Scholar
  32. 32.
    D.J. Fernández, B. Mielnik, Manipulation of quantum evolution, in Proceedings of the Third International Workshop on Squeezed States and Uncertainty Relations, NASA CP-3286, D. Han and K.B. Wolf Eds., NASA, USA (1994) 173–178.Google Scholar
  33. 33.
    B. Mielnik, D.J. Fernández, Exponential Formulae and Effective Operations, in Proceedings of the Fourth International Conference on Squeezed States and Uncertainty Relations, NASA CP-3322, D. Han et al., eds., NASA, USA (1996) 241–251.Google Scholar
  34. 34.
    F. Delgado, Operaciones selectivas de control cuántico, PhD Thesis, Cinvestav, 1999.Google Scholar
  35. 35.
    F. Delgado, B. Mielnik, Magnetic control of squeezing effects, J. Phys. A:Math. Gen. 31 (1998) 309–320.CrossRefMATHGoogle Scholar
  36. 36.
    F. Delgado, B. Mielnik, M.A. Reyes, Squeezed states and Helmholtz spectra, Phys. Lett. A 237 (1998) 359–364.CrossRefGoogle Scholar
  37. 37.
    F. Delgado, B. Mielnik, Are there Floquet quanta?, Phys. Lett. A 249 (1998) 369–375.MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    S. Cruz y Cruz, Esquemas cuánticos de Floquet: espectros y operaciones, PhDThesis, Cinvestav, 2005.Google Scholar
  39. 39.
    S. Cruz y Cruz, B. Mielnik, The parity phenomenon of the Floquet spectra, Phys. Lett. A 352 (2006) 36–40.Google Scholar
  40. 40.
    S. Cruz y Cruz, B. Mielnik, Quantum control with periodic sequences of non resonant pulses, Rev. Mex. Fis. 53 S4 (2007) 37–41.Google Scholar
  41. 41.
    S. Cruz y Cruz, B. Mielnik, Time Continuity and the Positivity Problem of the Floquet Hamiltonian, AIP Conf. Proc. 885 (2007) 26–29.Google Scholar
  42. 42.
    A. Ramírez, B. Mielnik, The challenge of non-hermitian structures in physics, Rev. Mex. Fis. 49 S2 (2003) 130–133.Google Scholar
  43. 43.
    A. Ramírez, Operaciones magnéticas: ¿una ventana a la geometría no conmutativa?, PhD Thesis, Cinvestav, 2008.Google Scholar
  44. 44.
    B. Mielnik, A. Ramírez, Ion traps: some semiclassical observations, Phys. Scr. 82 (2010) 055002.CrossRefGoogle Scholar
  45. 45.
    B. Mielnik, A. Ramírez, Inverting the Free Evolution: a Key to Quantum Control?, AIP Conf. Proc. 1307 (2010) 131–139.CrossRefGoogle Scholar
  46. 46.
    G. Herrera, Manipulación de una partícula de Schrödinger por un potencial cuadrático dependiente del tiempo, MSc Thesis, Cinvestav, 1987.Google Scholar
  47. 47.
    D. Sanjinés, Ecuación unidimensional de Schrödinger como un problema dinámico clásico, MSc Thesis, Cinvestav, 1990.Google Scholar
  48. 48.
    F. Solis, Estudio crítico del potencial ponderomotriz para las ondas planas linealmente polarizadas, MSc Thesis, Cinvestav, 1990.Google Scholar
  49. 49.
    M.A. Reyes, La ecuación angular de Riccati y el problema espectral unidimensional, MSc Thesis, Cinvestav, 1992.Google Scholar
  50. 50.
    B. Mielnik, M.A. Reyes, The classical Schrödinger equation, J. Phys. A:Math. Gen. 29 (1996) 6009–6025.MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    H. García-Compeán, B. Mielnik, M. Montesinos, M. Przanowski Eds., Topics in Mathematical Physics, General Relativity and Cosmology in Honor of Jerzy Plebański, World Scientific, Singapore, 2006.Google Scholar
  52. 52.
    B. Mielnik, The paradox of two bottles in quantum mechanics, Found. Phys. 20 (1990) 745–755.MathSciNetCrossRefGoogle Scholar
  53. 53.
    B. Mielnik, The screen problem, Found. Phys. 24 (1994) 1113–1129.MathSciNetCrossRefGoogle Scholar
  54. 54.
    B. Mielnik, Nonlinear quantum mechanics: a conflict with the Ptolomean structure?, Phys. Lett. A 289 (2001) 1–8.MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    B. Mielnik, G. Torres-Vega, “Time-operator”: the challenge persists, Conc. Phys. II (2005) 81–97.Google Scholar
  56. 56.
    B. Mielnik, O. Rosas-Ortiz, Quantum mechanical laws, in Fundamentals of Physics Volume 1, J.L. Morán Ed., Encyclopedia of Life Support Systems (2009) 255–326.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Departamento de FísicaCinvestavMéxico D.F.Mexico

Personalised recommendations