Combinatorial 2-truncated Cubes and Applications

  • Victor M. Buchstaber
  • Vadim D. Volodin
Part of the Progress in Mathematics book series (PM, volume 299)


We study a class of simple polytopes, called 2-truncated cubes. These polytopes have remarkable properties and, in particular, satisfy Gal’s conjecture. Well-known polytopes (flag nestohedra, graph-associahedra and graph-cubeahedra) are 2-truncated cubes.


Connected Graph Simplicial Complex Hasse Diagram Star Graph Small Cover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Buchstaber, “Ring of simple polytopes and differential equations”, Trudy Matematicheskogo Instituta imeni V.A. Steklova 263 (2008) 18–43.Google Scholar
  2. 2.
    V.M. Buchstaber and T.E. Panov, Torus Actions and Their Applications in Topology and Combinatorics, University Lecture Series, American Mathematical Society, Providence, RI, 2002.Google Scholar
  3. 3.
    M. Carr and S. Devadoss, “Coxeter complexes and graph associahedra”, Topology and its Applications 153 (2006) 2155–2168.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    C. Ceballos and G. Ziegler, “Three non-equivalent realizations of the associahedron”, .
  5. 5.
    F. Chapoton, S. Fomin, and A. Zelevinsky, “Polytopal realizations of generalized associahedra”, Canad. Math. Bull. 45 (2002) 537–566.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    R. Charney and M. Davis, “The Euler characteristic of a nonpositively curved, piecewise Euclidean manifold”, Pacific J. Math. 171 (1995) 117–137.MathSciNetzbMATHGoogle Scholar
  7. 7.
    C.D. Concini and C. Procesi, “Wonderful models of subspace arrangements”, Selecta Mathematica (N.S.) 1 (1995) 459–494.Google Scholar
  8. 8.
    M. Davis and T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J. 62 (1991)417–451.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    S.L. Devadoss, T. Heath, and W. Vipismakul, “Deformations of bordered surfaces and convex polytopes”, Notices of the AMS 58 (2011) 530–541.MathSciNetzbMATHGoogle Scholar
  10. 10.
    N. Erokhovets, presented in a seminar at Moscow State University.Google Scholar
  11. 11.
    E.-M. Feichtner and I. Mueller, “On the topology of nested set complexes”, Proceedings of American Mathematical Society 133 (2005) 999–1006.zbMATHCrossRefGoogle Scholar
  12. 12.
    E.-M. Feichtner and B. Sturmfels, “Matroid polytopes, nested sets, and Bergman fans”, Portu- galiae Mathematica (N.S.) 62 (2005) 437–468.Google Scholar
  13. 13.
    S. Fomin and A. Zelevinsky, “Y-systems and generalized associahedra”, Annals of Math. 158 (2003) 977–1018.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    S. Gal, “Real root conjecture fails for five- and higher-dimensional spheres”, Discrete & Computational Geometry 34 (2005) 269–284.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, 1994.Google Scholar
  16. 16.
    M.A. Gorsky, “Proof of Gal’s conjecture for the series of generalized associahedra”, Russian Math. Surveys 65 (2010) 1178–1180.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    T. Oda, Convex Bodies and Algebraic Geometry: An Introduction to the Theory ofToric Varieties, Springer-Verlag, Berlin, 1998.Google Scholar
  18. 18.
    T. Panov, N. Ray, and R. Vogt, “Colimits, Stanley-Reisner algebras, and loop spaces”, in In Categorical Decomposition Techniques in Algebraic Topology, Progress in Mathematics, vol. 215, Birkhäuser, 2004, 261–291.Google Scholar
  19. 19.
    A. Postnikov, “Permutohedra, associahedra, and beyond”, International Mathematics Research Notices (2009) 1026–1106.Google Scholar
  20. 20.
    A. Postnikov, V. Reiner, and L. Williams, “Faces of generalized permutohedra”, Documenta Mathematica 13 (2008) 207–273.MathSciNetzbMATHGoogle Scholar
  21. 21.
    A. Zelevinsky, “Nested set complexes and their polyhedral realizations”, Pure and Applied Mathematics Quarterly 2 (2006) 655–671.MathSciNetzbMATHGoogle Scholar
  22. 22.
    G. Ziegler, Lectures on Polytopes, Springer-Verlag, 1995.Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Steklov Mathematics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations