Advertisement

Realizing the Associahedron: Mysteries and Questions

  • Cesar CeballosEmail author
  • Günter M. Ziegler
Chapter
Part of the Progress in Mathematics book series (PM, volume 299)

Abstract

There are many open problems and some mysteries connected to the realizations of the associahedra as convex polytopes. In this note, we describe three – concerning special realizations with the vertices on a sphere, the space of all possible realizations, and possible realizations of the multiassociahedron.

Keywords

Simplicial Complex Realization Space Convex Polygon Cluster Algebra Simple Polytopes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.J. Billera and B. Sturmfels, “Fiber polytopes”, Annals of Math. 135 (1992) 527–549.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    J. Bokowski and A. Guedes de Oliveira, “Simplicial convex 4-polytopes do not have the isotopy property”, Portugaliae Math. 47 (1990) 309–318.MathSciNetzbMATHGoogle Scholar
  3. 3.
    J. Bokowski and V. Pilaud, “On symmetric realizations of the simplicial complex of 3-crossing- free sets of diagonals of the octagon”, in Proc. 21st Canadian Conf. Computat. Geometry (CCCG2009), 2009, 41–44.Google Scholar
  4. 4.
    R. Bott and C. Taubes, “On the self-linking of knots”, J. Mathematical Physics 35 (1994) 5247–5287.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    V. Capoyleas and J. Pach, “A Turán-type theorem on chords of a convex polygon”, J. Combinatorial Theory, Ser. B 56 (1992) 9–15.Google Scholar
  6. 6.
    C. Ceballos, J. Labbé, and C. Stump, “Subword complexes, cluster complexes, and generalized multi-associahedra”, arxiv.org/abs/1108.1776.
  7. 7.
    C. Ceballos, F. Santos, and G.M. Ziegler, “Many non-equivalent realizations of the associahe- dron”, Preprint, September 2011, 28 pages; arxiv.org/abs/1109.5544.
  8. 8.
    F. Chapoton, S. Fomin, and A. Zelevinsky, “Polytopal realizations of generalized associahedra”, Canad. Math. Bull. 45 (2002) 537–566.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    A.W.M. Dress, J.H. Koolen, and V.L. Moulton, “On line arrangements in the hyperbolic plane”, European J. Combinatorics 23 (2002) 549–557.MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Fomin and A. Zelevinsky, “Y-systems and generalized associahedra”, Annals of Math. 158 (2003) 977–1018.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    E. Gawrilow and M. Joswig, “polymake: a framework for analyzing convex polytopes”, in Polytopes – Combinatorics and Computation, G. Kalai and G.M. Ziegler, eds., Birkhäuser, 2000, 43–74.Google Scholar
  12. 12.
    I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, 1994.Google Scholar
  13. 13.
    I.M. Gel’fand, A.V. Zelevinskiĭ, and M.M. Kapranov, “Newton polytopes of principal a- determinants”, Soviet Math. Doklady 40 (1990) 278–281.Google Scholar
  14. 14.
    I.M. Gel’fand, A.V. Zelevinskiĭ, and M.M. Kapranov, “Discriminants of polynomials in several variables and triangulations of Newton polyhedra”, Leningrad Math. J. 2 (1991) 449–505.Google Scholar
  15. 15.
    M. Haiman, “Constructing the associahedron”, unpublished manuscript, MIT 1984, 11 pages; math.berkeley.edu/~mhaiman/ftp/assoc/manuscript.pdf.
  16. 16.
    C. Hohlweg and C.E.M.C. Lange, “Realizations of the associahedron and cyclohedron”, Discrete Comput. Geometry 37 (2007) 517–543.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    C. Hohlweg, C.E.M.C. Lange, and H. Thomas, “Permutahedra and generalized associahedra”, Advances in Math. 226 (2011) 608–640.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    D. Huguet and D. Tamari, “La structure polyédrale des complexes de parenthésages”, J. Combinatorics, Information & System Sciences 3 (1978) 69–81.MathSciNetzbMATHGoogle Scholar
  19. 19.
    B. Jaggi, P. Mani-Levitska, B. Sturmfels, and N. White, “Uniform oriented matroids without the isotopy property”, Discrete Comput. Geometry 4 (1989) 97–100.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    J. Jonsson, “Generalized triangulations of the n-gon”, Report from Oberwolfach Workshop “Topological and Geometric Combinatorics”, April 2003, p. 11, www.mfo.de/occasion/0315/www view.
  21. 21.
    J. Jonsson, “Generalized triangulations and diagonal-free subsets of stack polyominoes”, J. Combinatorial Theory, Ser. A 112 (2005) 117–142.Google Scholar
  22. 22.
    M.M. Kapranov, “Permuto-associahedron, Mac Lane coherence theorem and asymptotic zones for the KZ equation”, J. Pure and Applied Algebra 85 (1993) 119–142.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    C.W. Lee, “The associahedron and triangulations of the n-gon”, European J. Combinatorics 10 (1989) 551–560.zbMATHGoogle Scholar
  24. 24.
    J.L. Loday, “Realization of the Stasheff polytope”, Arch. Math. 83 (2004) 267–278.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    T. Nakamigawa, “A generalization of diagonal flips in a convex polygon”, Theoretical Computer Science 235 (2000) 271–282.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    V. Pilaud and F. Santos, “Multitriangulations as complexes of star polygons”, Discrete Comput. Geometry 41 (2009) 284–317.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    A. Postnikov, “Permutohedra, associahedra, and beyond”, International Mathematics Research Notices 2009 (2009) 1026–1106.MathSciNetzbMATHGoogle Scholar
  28. 28.
    V. Reiner and G.M. Ziegler, “Coxeter-associahedra”, Mathematika 41 (1994) 364–393.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    J. Richter-Gebert, Realization Spaces of Polytopes, Lecture Notes in Mathematics, vol. 1643, Springer-Verlag, Berlin Heidelberg, 1996.Google Scholar
  30. 30.
    J. Richter-Gebert and G.M. Ziegler, “Realization spaces of 4-polytopes are universal”, Bulletin of the American Mathematical Society 32 (1995) 403–412.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    G. Rote, F. Santos, and I. Streinu, “Expansive motions and the polytope of pointed pseudotriangulations”, in Discrete and Computational Geometry, Algorithms and Combinatorics, vol. 25, Springer, Berlin, 2003, 699–736.Google Scholar
  32. 32.
    F. Santos, “Catalan many associahedra”, lecture at the “Kolloquium über Kombinatorik (KolKom04)”, Magdeburg, November 2004.Google Scholar
  33. 33.
    L. Serrano and C. Stump, “Maximal fillings of moon polyominoes, simplicial complexes, and Schubert polynomials”, arxiv.org/abs/1009.4690.
  34. 34.
    S. Shnider and S. Sternberg, Quantum groups. From coalgebras to Drinfel’d algebras: A guided tour, Graduate Texts in Math. Physics, II, International Press, Cambridge, MA, 1993.Google Scholar
  35. 35.
    D. Soll and V. Welker, “Type-B generalized triangulations and determinantal ideals”, Discrete Math. 309 (2009) 2782–2797.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    J.D. Stasheff, “Homotopy associativity of H-spaces”, Transactions Amer. Math. Soc. 108 (1963) 275–292.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    E. Steinitz, “Polyeder und Raumeinteilungen”, in Encyklopädie der mathematischen Wissenschaften, Anwendungen, Dritter Band: Geometrie, III.1.2., Heft 9, Kapitel III AB 12, W.F. Meyer and H. Mohrmann, eds., B.G. Teubner, Leipzig, 1922, 1–139.Google Scholar
  38. 38.
    C. Stump, “A new perspective on k-triangulations”, J. Combinatorial Theory, Ser. A 118 (2011) 1794–1800.Google Scholar
  39. 39.
    D. Tamari, “Monoïdes préordonnés et chaînes de Malcev”, Doctoral Thesis, Paris 1951, 81 pages.Google Scholar
  40. 40.
    G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995, Revised edition, 1998; seventh updated printing 2007.Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Inst. MathematicsFU BerlinBerlinGermany

Personalised recommendations