The Automorphic Description of Intersection Cohomology

  • Jayce Getz
  • Mark Goresky
Part of the Progress in Mathematics book series (PM, volume 298)


In this chapter we use Proposition 6.6 to construct a map
$$ {\rm Hilbert\, modular \,forms} \,{\longrightarrow}^{\omega}\,{\rm intersection \,cohomology}$$
which takes
$${\rm weight\,nebentypus }\,{\longrightarrow}\,{\rm local \,coefficient \,system}$$
$${\rm Hecke \,operator}\quad\quad{\longrightarrow}\,{\rm action \,of \,Hecke\,correspondence}$$
$${\rm Petersson\,product }\,{\longrightarrow}\,{\rm intersection \,product}$$


Vector Bundle Modular Form Local System Automorphic Form Double Coset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Basel 2012

Authors and Affiliations

  • Jayce Getz
    • 1
  • Mark Goresky
    • 2
  1. 1.Department of MathematicsMcGill UniversityMontrealCanada
  2. 2.School of MathematicsInstitute for Advanced StudyPrincetonUSA

Personalised recommendations