Fundamental Error Estimate Inequalities for the Tikhonov Regularization Using Reproducing Kernels

  • Luís P. Castro
  • Hiroshi Fujiwara
  • Saburou SaitohEmail author
  • Yoshihiro Sawano
  • Akira Yamada
  • Masato Yamada
Conference paper
Part of the International Series of Numerical Mathematics book series (ISNM, volume 161)


First of all, we will be concentrated in some particular but very important inequalities. Namely, for a real-valued absolutely continuous function on [0,1], satisfying f(0)=0 and \(\int_{0}^{1}f'(x)^{2}\,dx<1\), we have, by using the theory of reproducing kernels
$$\int_0^1\left(\frac{f(x)}{1-f(x)}\right)^{\prime\,2}(1-x)^2\,dx \le\frac{\int_0^1f^{\prime\,2}(x)\,dx}{1-\int_0^1f^{\prime\,2}(x)\,dx}. $$
A. Yamada gave a direct proof for this inequality with a generalization and, as an application, he unified the famous Opial inequality and its generalizations.

Meanwhile, we gave some explicit representations of the solutions of nonlinear simultaneous equations and of the explicit functions in the implicit function theory by using singular integrals. In addition, we derived estimate inequalities for the consequent regularizations of singular integrals.

Our main purpose in this paper is to introduce our method of constructing approximate and numerical solutions of bounded linear operator equations on reproducing kernel Hilbert spaces by using the Tikhonov regularization. In view of this, for the error estimates of the solutions, we will need the inequalities for the approximate solutions. As a typical example, we shall present our new numerical and real inversion formulas of the Laplace transform whose problems are famous as typical ill-posed and difficult ones. In fact, for this matter, a software realizing the corresponding formulas in computers is now included in a present request for international patent. Here, we will be able to see a great computer power of H. Fujiwara with infinite precision algorithms in connection with the error estimates.


Reproducing kernel Inequality Implicit function Singular integral Best approximation Tikhonov regularization Real inversion of Laplace transform Infinite precision method 

Mathematics Subject Classification

30C40 46E32 44A05 44A10 35A22 44A15 35K05 35A22 46E22 



S. Saitoh is supported in part by the Grant-in-Aid for the Scientific Research (C)(2) (No. 21540111) from the Japan Society for the Promotion Science and Y. Sawano was supported by Grant-in-Aid for Young Scientists (B) (No. 21740104) Japan Society for the Promotion of Science. L. Castro and S. Saitoh are supported in part by Center for Research and Development in Mathematics and Applications, University of Aveiro, Portugal, through FCT—Portuguese Foundation for Science and Technology.


  1. 1.
    Beesack, P.R.: Elementary proofs of some Opial-type integral inequalities. J. Anal. Math. 36(1979), 1–14 (1980). MR 81g:26006 MathSciNetGoogle Scholar
  2. 2.
    Beesack, P.R., Das, K.M.: Extensions of Opial’s inequality. Pac. J. Math. 26, 215–232 (1968). MR 39:385 MathSciNetzbMATHGoogle Scholar
  3. 3.
    Calvert, J.: Some generalizations of Opial’s inequality. Proc. Am. Math. Soc. 18, 72–75 (1967). MR 34:4433 MathSciNetzbMATHGoogle Scholar
  4. 4.
    Castro, L.P., Murata, K., Saitoh, S., Yamada, M.: Explicit integral representations of implicit functions. Carpath. J. Math. (accepted for publication) Google Scholar
  5. 5.
    Castro, L.P., Saitoh, S., Sawano, Y., Simões, A.M.: General inhomogeneous discrete linear partial differential equations with constant coefficients on the whole spaces. Complex Anal. Oper. Theory 6, 307–324 (2012) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fujiwara, H.: High-accurate numerical method for integral equation of the first kind under multiple-precision arithmetic. Theor. Appl. Mech. Jpn. 52, 192–203 (2003) Google Scholar
  7. 7.
    Fujiwara, H., Matsuura, T., Saitoh, S., Sawano, Y.: Numerical real inversion of the Laplace transform by using a high-accuracy numerical method. In: Further Progress in Analysis, pp. 574–583. World Sci. Publ., Hackensack (2009) Google Scholar
  8. 8.
    Fujiwara, H.: Numerical real inversion of the Laplace transform by reproducing kernel and multiple-precision arithmetic. In: Progress in Analysis and its Applications, Proceedings of the 7th International ISAAC Congress, pp. 289–295. World Scientific, Singapore (2010) CrossRefGoogle Scholar
  9. 9.
    Godunova, E.K., Levin, V.I.: An inequality of Maroni (in Russian). Mat. Zametki 2, 221–224 (1967). MR 36:333 MathSciNetGoogle Scholar
  10. 10.
    Itou, H., Saitoh, S.: Analytical and numerical solutions of linear singular integral equations. Int. J. Appl. Math. Stat. 12, 76–89 (2007) MathSciNetzbMATHGoogle Scholar
  11. 11.
    Matkowski, J.: L p-like paranorms. In: Selected Topics in Functional Equations and Iteration Theory (Graz, 1991). Grazer Math. Ber., vol. 316, pp. 103–138 (1992). MR 94g:39010 Google Scholar
  12. 12.
    Matsuura, T., Saitoh, S.: Analytical and numerical inversion formulas in the Gaussian convolution by using the Paley-Wiener spaces. Appl. Anal. 85, 901–915 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Mitrinović, D.S.: Analytic Inequalities, Die Grundlehren der mathematischen Wissenschaften, vol. 165. Springer-Verlag, New York–Berlin (1970) xii+400 pp. MR 43:448 zbMATHGoogle Scholar
  14. 14.
    Opial, Z.: Sur une inégalité. Ann. Pol. Math. 8, 29–32 (1960). MR 22:3772 MathSciNetzbMATHGoogle Scholar
  15. 15.
    Saito, S., Saito, Y.: Yoakemae – Yocchan no Omoi (Predawn – Thoughts of Yotchan) (in Japanese). Bungeisha, Tokyo (2010) Google Scholar
  16. 16.
    Saitoh, S.: Theory of Reproducing Kernels and Its Applications. Pitman Research Notes in Mathematics Series, vol. 189. Longman Scientific & Technical, Harlow (1988) x+157 pp. MR 90f:46045 zbMATHGoogle Scholar
  17. 17.
    Saitoh, S.: Natural norm inequalities in nonlinear transforms. In: General Inequalities, 7 (Oberwolfach, 1995), Internat. Ser. Numer. Math., vol. 123, pp. 39–52. Birkhaüser, Basel (1997). MR 98j:46023 CrossRefGoogle Scholar
  18. 18.
    Saitoh, S.: Nonlinear transforms and analyticity of functions. In: Nonlinear Mathematical Analysis and Applications, pp. 223–234. Hadronic Press, Palm Harbor (1998) Google Scholar
  19. 19.
    Saitoh, S.: Integral Transforms, Reproducing Kernels and Their Applications. Pitman Research Notes in Mathematics Series, vol. 369. Longman, Harlow (1997) xiv+280 pp. MR 98k:46041 zbMATHGoogle Scholar
  20. 20.
    Saitoh, S.: Approximate real inversion formulas of the Laplace transform. Far East J. Math. Sci. 11, 53–64 (2003) MathSciNetzbMATHGoogle Scholar
  21. 21.
    Sawano, Y., Yamada, M., Saitoh, S.: Singular integrals and natural regularizations. Math. Inequal. Appl. 13, 289–303 (2010) MathSciNetzbMATHGoogle Scholar
  22. 22.
    Yamada, A.: Saitoh’s inequality and Opial’s inequality. Math. Inequal. Appl. 14(3), 523–528 (2011) MathSciNetzbMATHGoogle Scholar
  23. 23.
    Yamada, M., Saitoh, S.: Identifications of non-linear systems. J. Comput. Math. Optim. 4(1), 47–60 (2008). MR 2009b:93051 MathSciNetzbMATHGoogle Scholar
  24. 24.
    Yamada, M., Saitoh, S.: Explicit and direct representations of the solutions of nonlinear simultaneous equations. In: Progress in Analysis and its Applications, Proceedings of the 7th International ISAAC Congress, pp. 372–378. World Scientific, Singapore (2010) CrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  • Luís P. Castro
    • 1
  • Hiroshi Fujiwara
    • 2
  • Saburou Saitoh
    • 1
    Email author
  • Yoshihiro Sawano
    • 3
  • Akira Yamada
    • 4
  • Masato Yamada
    • 5
  1. 1.Center for R&D in Mathematics and Applications, Department of MathematicsUniversity of AveiroAveiroPortugal
  2. 2.Graduate School of InformaticsKyoto UniversityKyotoJapan
  3. 3.Department of MathematicsKyoto UniversityKyotoJapan
  4. 4.Department of MathematicsTokyo Gakugei UniversityKoganei-shiJapan
  5. 5.University Education CenterGunma UniversityMaebashi CityJapan

Personalised recommendations