Numerical Analysis of State-constrained Optimal Control Problems for PDEs

Chapter
Part of the International Series of Numerical Mathematics book series (ISNM, volume 160)

Abstract

We survey the results of SPP 1253 project “Numerical Analysis of State-constrained Optimal Control Problems for PDEs”. In the first part, we consider Lavrentiev-type regularization of both distributed and boundary control. In the second part, we present a priori error estimates for elliptic control problems with finite-dimensional control space and state-constraints both in finitely many points and in all points of a subdomain with nonempty interior.

Keywords

Optimal control state constraints regularization finite element discretization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Bergounioux, M. Haddou, M. Hintermüller, and K. Kunisch. A comparison of a Moreau-Yosida-based active set strategy and interior point methods for constrained optimal control problems. SIAM J. Optimization, 11:495–521, 2000.CrossRefMATHGoogle Scholar
  2. 2.
    J.T. Betts and S.L. Campbell. Discretize then Optimize. In D.R. Ferguson and T.J. Peters, editors, Mathematics in Industry: Challenges and Frontiers A Process View: Practice and Theory. SIAM Publications, Philadelphia, 2005.Google Scholar
  3. 3.
    F. Bonnans and A. Shapiro. Perturbation analysis of optimization problems. Springer, New York, 2000.MATHGoogle Scholar
  4. 4.
    E. Casas. Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control and Optimization, 35:1297–1327, 1997.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    E. Casas. Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints. ESAIM: Control, Optimization and Calculus of Variations, 31:345–374, 2002.CrossRefMathSciNetGoogle Scholar
  6. 6.
    E. Casas and M. Mateos. Uniform convergence of the FEM. Applications to state constrained control problems. J. of Computational and Applied Mathematics, 21:67–100, 2002.MATHMathSciNetGoogle Scholar
  7. 7.
    E. Casas, J. de los Reyes, and F. Tröltzsch. Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM J. Optimization, 19(2):616–643, 2008.CrossRefMATHGoogle Scholar
  8. 8.
    J.C. de los Reyes, P. Merino, J. Rehberg, and F. Tröltzsch. Optimality conditions for state-constrained PDE control problems with time-dependent controls. Control Cybern., 37:5–38, 2008.MATHGoogle Scholar
  9. 9.
    K. Deckelnick and M. Hinze. Convergence of a finite element approximation to a state constrained elliptic control problem. SIAM J. Numer. Anal., 45:1937–1953, 2007.CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    K. Deckelnick and M. Hinze. Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations. In K. Kunisch, G. Of, and O. Steinbach, editors, Proceedings of ENUMATH 2007, the 7th European Conference on Numerical Mathematics and Advanced Applications, Heidelberg, September 2007 2008. Springer.Google Scholar
  11. 11.
    P. Deuflhard, M. Seebass, D. Stalling, R. Beck, and H.-C. Hege. Hyperthermia treatment planning in clinical cancer therapy: Modelling, simulation, and visualization. In A. Sydow, editor, Computational Physics, Chemistry and Biology, pages 9–17. Wissenschaft und Technik-Verlag, 1997.Google Scholar
  12. 12.
    K. Eppler and F. Tröltzsch. Fast optimization methods in the selective cooling of steel. In M. Grötschel, S.O. Krumke, and J. Rambau, editors, Online Optimization of Large Scale Systems, pages 185–204. Springer, 2001.Google Scholar
  13. 13.
    R. Griesse, N. Metla, and A. Rösch. Convergence analysis of the SQP method for nonlinear mixed-constrained elliptic optimal control problems. ZAMM, 88(10):776–792, 2008.CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    M. Hintermüller and M. Hinze. Moreau-Yosida regularization in state constrained elliptic control problems: Error estimates and parameter adjustment. SIAM J. on Numerical Analysis, 47:1666–1683, 2009.CrossRefMATHGoogle Scholar
  15. 15.
    M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim., 13:865–888, 2003.CrossRefMATHGoogle Scholar
  16. 16.
    M. Hintermüller and A. Schiela. Discretization of interior point methods for state constrained elliptic optimal control problems: Optimal error estimates and parameter adjustment. COAP, published online, 2009.Google Scholar
  17. 17.
    M. Hintermüller and K. Kunisch. Path-following methods for a class of constrained minimization problems in function space. SIAM J. on Optimization, 17:159–187, 2006.CrossRefMATHGoogle Scholar
  18. 18.
    M. Hintermüller, F. Tröltzsch, and I. Yousept. Mesh-independence of semismooth Newton methods for Lavrentiev-regularized state constrained nonlinear optimal control problems. Numerische Mathematik, 108(4):571–603, 2008.CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    M. Hinze. A variational discretization concept in control constrained optimization: the linear-quadratic case. J. Computational Optimization and Applications, 30:45–63, 2005.CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    K. Ito and K. Kunisch. Semi-smooth Newton methods for state-constrained optimal control problems. Systems and Control Letters, 50:221–228, 2003.CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    K. Krumbiegel, I. Neitzel, and A. Rösch, Regularization for semilinear elliptic optimal control problems with pointwise state and control constraints, Computational optimization and applications, online first. DOI 10.1007/s10589-010-9357-zGoogle Scholar
  22. 22.
    K. Krumbiegel and A. Rösch. A virtual control concept for state constrained optimal control problems. COAP, 43(2):213–233, 2009.MATHGoogle Scholar
  23. 23.
    P. Merino, I. Neitzel, and F. Tröltzsch. Error estimates for the finite element discretization of semi-infinite elliptic optimal control problems. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, 30(2):221–236, 2010.MATHMathSciNetGoogle Scholar
  24. 24.
    P. Merino, I. Neitzel, and F. Tröltzsch. On linear-quadratic elliptic optimal control problems of semi-infinite type. Applicable Analysis, 90(6):1047–1074, 2011.CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    P. Merino, F. Tröltzsch, and B. Vexler. Error Estimates for the Finite Element Approximation of a Semilinear Elliptic Control Problem with State Constraints and Finite Dimensional Control Space. ESAIM:Mathematical Modelling and Numerical Analysis, 44:167–188, 2010.CrossRefMATHGoogle Scholar
  26. 26.
    C. Meyer. Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control Cybern., 37:51–85, 2008.MATHGoogle Scholar
  27. 27.
    C. Meyer and P. Philip. Optimizing the temperature profile during sublimation growth of SiC single crystals: Control of heating power, frequency, and coil position. Crystal Growth & Design, 5:1145–1156, 2005.CrossRefGoogle Scholar
  28. 28.
    C. Meyer, A. Rösch, and F. Tröltzsch. Optimal control of PDEs with regularized pointwise state constraints. Computational Optimization and Applications, 33(2003-14):209–228, 2006.CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    C. Meyer and F. Tröltzsch. On an elliptic optimal control problem with pointwise mixed control-state constraints. In A. Seeger, editor, Recent Advances in Optimization. Proceedings of the 12th French-German-Spanish Conference on Optimization held in Avignon, September 2024, 2004, Lectures Notes in Economics and Mathematical Systems. Springer-Verlag, 2005.Google Scholar
  30. 30.
    I. Neitzel, U. Prüfert, and T. Slawig. Strategies for time-dependent PDE control with inequality constraints using an integrated modeling and simulation environment. Numerical Algorithms, 50:241–269, 2009.CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    I. Neitzel and F. Tröltzsch. On convergence of regularization methods for nonlinear parabolic optimal control problems with control and state constraints. Control and Cybernetics, 37(4):1013–1043, 2008.MATHMathSciNetGoogle Scholar
  32. 32.
    I. Neitzel and F. Tröltzsch. On regularization methods for the numerical solution of parabolic control problems with pointwise state constraints. ESAIM Control, Optimisation and Calculus of Variations, 15( 2):426–453, 2009.CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    U. Prüfert, F. Tröltzsch, and M. Weiser. The convergence of an interior point method for an elliptic control problem with mixed control-state constraints. Comput. Optim. Appl., 39(2):183–218, March 2008.CrossRefMATHGoogle Scholar
  34. 34.
    R. Rannacher and B. Vexler. A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements. SIAM Control Optim., 44:1844–1863, 2005.CrossRefMathSciNetGoogle Scholar
  35. 35.
    J. Raymond and F. Tröltzsch. Second-order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete Contin. Dyn. Syst., 6:431–450, 2000.CrossRefMATHGoogle Scholar
  36. 36.
    A. Rösch and F. Tröltzsch. Existence of regular Lagrange multipliers for a nonlinear elliptic optimal control problem with pointwise control-state constraints. SIAM J. Control and Optimization, 45:548–564, 2006.CrossRefMathSciNetGoogle Scholar
  37. 37.
    A. Rösch and F. Tröltzsch. Sufficient second-order optimality conditions for an elliptic optimal control problem with pointwise control-state constraints. SIAM J. on Optimization, 17(3):776–794, 2006.CrossRefMATHGoogle Scholar
  38. 38.
    A. Schiela. Barrier methods for optimal control problems with state constraints. SIAM J. on Optimization, 20:1002–1031, 2009.CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and Applications. AMS, Providence, 2010.Google Scholar
  40. 40.
    F. Tröltzsch and I. Yousept. A regularization method for the numerical solution of elliptic boundary control problems with pointwise state constraints. COAP, 42(1):43–66, 2009.MATHGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations