Organic Traffic Control

  • Holger Prothmann
  • Sven Tomforde
  • Jürgen Branke
  • Jörg Hähner
  • Christian Müller-Schloer
  • Hartmut Schmeck
Part of the Autonomic Systems book series (ASYS, volume 1)

Abstract

Urban road networks are an infrastructural key factor for modern cities. To facilitate an efficient transportation of people and goods, it is crucial to optimise the networks’ signalisation and to route drivers quickly to their destination. As road networks are widespread and their traffic demands are dynamically changing, adaptive and self-organising (and therefore organic) control systems are required. This article demonstrates the potential benefits of organic traffic control: It presents an Observer/Controller that optimises an intersection’s signalisation and introduces a self-organising coordination mechanism that allows for the traffic-responsive creation of progressive signal systems (or green waves). All presented mechanisms advance the state of the art and help to reduce the negative environmental and economical impact of traffic.

Keywords

Observer/Controller architecture Traffic signal control Routing Two-levelled learning Learning classifier system Evolutionary algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barceló, J., Codina, E., Casas, J., Ferrer, J.L., García, D.: Microscopic traffic simulation: a tool for the design, analysis and evaluation of intelligent transport systems. J. Intell. Robot. Syst. 41(2–3), 173–203 (2005) CrossRefGoogle Scholar
  2. 2.
    Bretherton, R.D., Rai, G.I.: The use of SCOOT in low flow conditions. Traffic Eng. Control 23(12), 574–576 (1982) Google Scholar
  3. 3.
    Busch, F., Kruse, G.: MOTION for SITRAFFIC—a modern approach to urban traffic control. In: Proc. 2001 IEEE Intelligent Transportation Systems Conf., pp. 61–64. IEEE, New York (2001) Google Scholar
  4. 4.
    Chrobok, R., Kaumann, O., Wahle, J., Schreckenberg, M.: Different methods of traffic forecast based on real data. Eur. J. Oper. Res. 155(3), 558–568 (2004) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edn. Springer, Berlin (2007) Google Scholar
  6. 6.
    Friedrich, B.: Steuerung von Lichtsignalanlagen: BALANCE – ein neuer Ansatz. Straßenverkehrstechnik 44(7), 321–328 (2000) MathSciNetGoogle Scholar
  7. 7.
    Klejnowski, L.: Design and implementation of an algorithm for the distributed detection of disturbances in traffic networks. Masterarbeit, Institut für Systems Engineering—SRA, Leibniz Universität Hannover (2008) Google Scholar
  8. 8.
    Lyda, J.J.: Dezentrale adaptive Routingverfahren in selbst-organisierten Verkehrsnetzen am Beispiel von Organic Traffic Control. Masterarbeit, Institut für Systems Engineering – SRA, Leibniz Universität Hannover (2010) Google Scholar
  9. 9.
    Prothmann, H., Branke, J., Schmeck, H., Tomforde, S., Rochner, F., Hähner, J., Müller-Schloer, C.: Organic traffic light control for urban road networks. Int. J. Auton. Adapt. Commun. Syst. 2(3), 203–225 (2009) CrossRefGoogle Scholar
  10. 10.
    Tanenbaum, A.S.: Computer Networks, 4th edn. Pearson Education, Upper Saddle River (2002) Google Scholar
  11. 11.
    Tomforde, S., Prothmann, H., Branke, J., Hähner, J., Müller-Schloer, C., Schmeck, H.: Possibilities and limitations of decentralised traffic control systems. In: World Congress on Computational Intelligence, pp. 3298–3306. IEEE, New York (2010) Google Scholar
  12. 12.
    Webster, F.V.: Traffic signal settings. Road Research Technical Paper No. 39. Road Research Laboratory (1958) Google Scholar
  13. 13.
    Wedde, H.F., Lehnhoff, S., et al.: Highly dynamic and adaptive traffic congestion avoidance in real-time inspired by honey bee behavior. In: Holleczek, P., Vogel-Heuser, B. (eds.) Mobilität und Echtzeit – Fachtagung der GI-Fachgruppe Echtzeitsysteme, pp. 21–31. Springer, Berlin (2007) Google Scholar
  14. 14.
    Wilson, S.W.: Classifier fitness based on accuracy. Evol. Comput. 3(2), 149–175 (1995) CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Holger Prothmann
    • 1
  • Sven Tomforde
    • 2
  • Jürgen Branke
    • 3
  • Jörg Hähner
    • 2
  • Christian Müller-Schloer
    • 2
  • Hartmut Schmeck
    • 1
  1. 1.Institute AIFBKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute of Systems EngineeringLeibniz Universität HannoverHannoverGermany
  3. 3.Warwick Business SchoolUniversity of WarwickCoventryUK

Personalised recommendations