Causal Boundary of Spacetimes:Revision and Applications to AdS/CFT Correspondence

  • José Luis Flores
  • Jónatan Herrera
  • Miguel Sánchez


The aim of this work is to explain the status and role of the so-called causal boundary of a spacetime in Mathematical Physics and Differential Geometry. This includes: (a) the consistency of its latest redefinition, (b) its role as an intrinsic conformally invariant boundary in the AdS/CFT correspondence, (c) its relation with the Gromov and Cauchy boundaries for a Riemannian manifold, and (d) its further relation with boundaries in Finsler Geometry.


Causal boundary conformal boundary AdS/CFT correspondence plane wave static spacetime Gromov compactification Cauchy completion Busemann function stationary spacetime Finsler metric Randers metric pp-wave arrival functional Sturm-Liouville theory. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Ashtekar, R. O. Hansen, A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity, J. Math. Phys. 19 (1978), no. 7, 1542–1566.Google Scholar
  2. [2]
    D. Berenstein, J. M. Maldacena and H. Nastase, Strings in flat space and pp waves from N = 4 super Yang Mills, J. High Energy Phys. 0204 (2002) 013, 30 pp.Google Scholar
  3. [3]
    D. Berenstein and H. Nastase, On lightcone string field theory from super Yang- Mills and holography. Available at arXiv:hep-th/0205048.Google Scholar
  4. [4]
    M. Blau, J. Figueroa-O’Farrill, C. Hull, G. Papadopoulos, Penrose limits and maximal supersymmetry, Class. Quant. Grav. 19 (2002) L87–L95.Google Scholar
  5. [5]
    R. Budic, R. K. Sachs, Causal boundaries for general relativistic spacetimes, J. Math. Phys. 15 (1974) 1302–1309.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    E. Caponio, M. A. Javaloyes, M. Sánchez, On the interplay between Lorentzian causality and Finsler metrics of Randers type, Rev. Matem. Iberoam. 27 (2011) 919–952.Google Scholar
  7. [7]
    P. T. Chrusciel, Conformal boundary extensions of Lorentzian manifolds, J. Diff. Geom. 84 (2010) 19–44.MathSciNetMATHGoogle Scholar
  8. [8]
    P. Eberlein, B. O’Neill, Visibility manifolds, Pacific J. Math. 46 (1973) 45–109.MathSciNetMATHGoogle Scholar
  9. [9]
    J. L. Flores, The causal boundary of spacetimes revisited, Commun. Math. Phys. 276 (2007) 611–643.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    J. L. Flores, S. G. Harris, Topology of the causal boundary for standard static spacetimes, Class. Quant. Grav. 24 (2007), no. 5, 1211–1260.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    J. L. Flores, J. Herrera, M. Sánchez, On the final definition of the causal boundary and its relation with the conformal boundary, Adv. Theor. Math. Phys. 15 (2011), to appear. Available at arXiv:1001.3270v3.Google Scholar
  12. [12]
    J. L. Flores, J. Herrera, M. Sánchez, Gromov, Cauchy and causal boundaries for Riemannian, Finslerian and Lorentzian manifolds, preprint 2010. Available at arXiv:1011.1154.Google Scholar
  13. [13]
    J. L. Flores, M. Sánchez, The causal boundary of wave-type spacetimes, J. High Energy Phys. (2008), no. 3, 036, 43 pp.Google Scholar
  14. [14]
    C. Frances, The conformal boundary of anti-de Sitter space-times, in: AdS/CFT correspondence: Einstein metrics and their conformal boundaries, 205–216, ed. O. Biquard, Euro. Math. Soc., Zürich, 2005.Google Scholar
  15. [15]
    A. García-Parrado, J. M. M. Senovilla, Causal relationship: a new tool for the causal characterization of Lorentzian manifolds, Class. Quantum Grav. 20 (2003) 625–64.Google Scholar
  16. [16]
    R. P. Geroch, Local characterization of singularities in general relativity, J. Math. Phys. 9 (1968) 450–465.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    R. P. Geroch, E. H. Kronheimer and R. Penrose, Ideal points in spacetime, Proc. Roy. Soc. Lond. A 237 (1972) 545–67.MathSciNetGoogle Scholar
  18. [18]
    R. P. Geroch, C. B. Liang, R. M. Wald, Singular boundaries of space-times, J. Math. Phys. 23 (1982), no. 3, 432–435.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    S. G. Harris, Universality of the future chronological boundary, J. Math. Phys. 39 (1998), no. 10, 5427–5445.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    S. G. Harris, Topology of the future chronological boundary: universality for spacelike boundaries, Classical Quantum Gravity 17 (2000), no. 3, 551–603.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    S. W. Hawking, G. F. R. Ellis, The large scale structure of space-time, Cambridge University, Cambridge, 1973.Google Scholar
  22. [22]
    Z. Q. Kuang, J. Z. Li, C. B. Liang, c-boundary of Taub’s plane-symmetric static vacuum spacetime, Phys. Rev. D 33 (1986) 1533–1537.MathSciNetCrossRefGoogle Scholar
  23. [23]
    R. Low, The space of null geodesics (and a new causal boundary), in: Analytical and numerical approaches to mathematical relativity, 35-50, Lecture Notes in Phys. 692, Springer, Berlin, 2006.Google Scholar
  24. [24]
    D. Marolf, S. Ross, Plane waves: to infinity and beyond! Class. Quant. Grav. 19 (2002) 6289–6302.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    D. Marolf, S. R. Ross, A new recipe for causal completions, Class. Quant. Grav. 20 (2003) 4085–4117.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    E. Minguzzi, M. Sánchez, The causal hierarchy of spacetimes, in: Recent developments in pseudo-Riemannian geometry (2008) 359–418. ESI Lect. in Math. Phys., European Mathematical Society Publishing House. Available at grqc/0609119.Google Scholar
  27. [27]
    O. Müller, M. Sánchez, Lorentzian manifolds isometrically embeddable in \( \mathbb{L} \) N, Trans. Amer. Math. Soc. 363 (2011) 5367–5379.Google Scholar
  28. [28]
    B. O’Neill, Semi-Riemannian geometry. With applications to relativity, Academic Press, 1983.Google Scholar
  29. [29]
    S. Scott, P. Szekeres, The abstract boundary—a new approach to singularities of manifolds, J. Geom. Phys. 13 (1994), no. 3, 223–253.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    I. Rácz, Causal boundary of space-times, Phys. Rev. D 36 (1987) 1673–1675. Causal boundary for stably causal space-times, Gen. Relat. Grav. 20 (1988) 893–904.Google Scholar
  31. [31]
    M. Sánchez, Causal boundaries and holography on wave type spacetimes, Nonlinear Anal., 71 (2009) e1744–e1764.Google Scholar
  32. [32]
    B. G. Schmidt, A new definition of singular points in general relativity. Gen. Relat. Grav. 1 (1970/71), no. 3, 269–280.Google Scholar
  33. [33]
    S. Scott, P. Szekeres, The abstract boundary–a new approach to singularities of manifolds, J. Geom. Phys. 13 (1994) 223–253.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    L. B. Szabados, Causal boundary for strongly causal spaces, Class. Quant. Grav. 5 (1988) 121–34. Causal boundary for strongly causal spacetimes: II, Class. Quant. Grav. 6 (1989) 77–91.Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • José Luis Flores
    • 1
  • Jónatan Herrera
    • 1
  • Miguel Sánchez
    • 2
  1. 1.Departamento de Álgebra, Geometría y Topología Fac. CienciasUniversidad de MálagaMálagaSpain
  2. 2.Departamento de Geometría y Topología Fac. CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations