On the Structure of the Eigenvectors of Large Hermitian Toeplitz Band Matrices

  • Albrecht Böttcher
  • Sergei M. Grudsky
  • Egor A. Maksimenko
Part of the Operator Theory: Advances and Applications book series (OT, volume 210)


The paper is devoted to the asymptotic behavior of the eigenvectors of banded Hermitian Toeplitz matrices as the dimension of the matrices increases to infinity. The main result, which is based on certain assumptions, describes the structure of the eigenvectors in terms of the Laurent polynomial that generates the matrices up to an error term that decays exponentially fast. This result is applicable to both extreme and inner eigenvectors.

Mathematics Subject Classification (2000)

Primary 47B35 Secondary 15A18 41A25 65F15 


Toeplitz matrix eigenvector asymptotic expansions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Böttcher and S.M. Grudsky, Spectral Properties of Banded Toeplitz Matrices, SIAM, Philadelphia 2005.zbMATHCrossRefGoogle Scholar
  2. [2]
    A. Böttcher, S.M. Grudsky, E.A. Maksimenko, Inside the eigenvalues of certain Hermitian Toeplitz band matrices. Journal of Computational and Applied Mathematics 233 (2010), 2245–2264.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    A. Böttcher, S.M. Grudsky, E.A. Maksimenko, and J. Unterberger, The first order asymptotics of the extreme eigenvectors of certain Hermitian Toeplitz matrices. Integral Equations and Operator Theory 63 (2009), 165–180.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    A. Böttcher, S.M. Grudsky, and J. Unterberger, Asymptotic pseudomodes of Toeplitz matrices, Operators and Matrices 2 (2008), 525–541.zbMATHMathSciNetGoogle Scholar
  5. [5]
    A. Böttcher and B. Silbermann, Introduction to Large Truncated Toeplitz Matrices, Universitext, Springer-Verlag, New York 1999.zbMATHGoogle Scholar
  6. [6]
    C. Estatico and S. Serra Capizzano, Superoptimal approximation for unbounded symbols, Linear Algebra Appl. 428 (2008), 564–585.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, University of California Press, Berkeley 1958.zbMATHGoogle Scholar
  8. [8]
    C.M. Hurvich and Yi Lu, On the complexity of the preconditioned conjugate gradient algorithm for solving Toeplitz systems with a Fisher-Hartwig singularity, SIAM J. Matrix Anal. Appl. 27 (2005), 638–653.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    M. Kac, W.L. Murdock, and G. Szegö, On the eigenvalues of certain Hermitian forms, J. Rational Mech. Anal. 2 (1953), 767–800.MathSciNetGoogle Scholar
  10. [10]
    A.Yu. Novosel’tsev and I.B. Simonenko, Dependence of the asymptotics of extreme eigenvalues of truncated Toeplitz matrices on the rate of attaining an extremum by a symbol, St. Petersburg Math. J. 16 (2005), 713–718.CrossRefMathSciNetGoogle Scholar
  11. [11]
    S.V. Parter, Extreme eigenvalues of Toeplitz forms and applications to elliptic difference equations, Trans. Amer. Math. Soc. 99 (1961), 153–192.zbMATHMathSciNetGoogle Scholar
  12. [12]
    S.V. Parter, On the extreme eigenvalues of Toeplitz matrices, Trans. Amer. Math. Soc. 100 (1961), 263–276.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    S. Serra Capizzano, On the extreme spectral properties of Toeplitz matrices generated by L 1 functions with several minima/maxima, BIT 36 (1996), 135–142.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    S. Serra Capizzano, On the extreme eigenvalues of Hermitian (block ) Toeplitz matrices, Linear Algebra Appl. 270 (1998), 109–129.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    S. Serra Capizzano and P. Tilli, Extreme singular values and eigenvalues of non-Hermitian block Toeplitz matrices, J. Comput. Appl. Math. 108 (1999), 113–130.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    W.F. Trench, Explicit inversion formulas for Toeplitz band matrices, SIAM J. Algebraic Discrete Methods 6 (1985), 546–554.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    W.F. Trench, Interlacement of the even and odd spectra of real symmetric Toeplitz matrices, Linear Algebra Appl. 195 (1993), 59–68.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    H. Widom, On the eigenvalues of certain Hermitian operators, Trans. Amer. Math. Soc. 88 (1958), 491–522.zbMATHMathSciNetGoogle Scholar
  19. [19]
    N.L. Zamarashkin and E.E. Tyrtyshnikov, Distribution of the eigenvalues and singular numbers of Toeplitz matrices under weakened requirements on the generating function, Sb. Math. 188 (1997), 1191–1201.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    P. Zizler, R.A. Zuidwijk, K.F. Taylor, and S. Arimoto, A finer aspect of eigenvalue distribution of selfadjoint band Toeplitz matrices, SIAM J. Matrix Anal. Appl. 24 (2002), 59–67.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Albrecht Böttcher
    • 1
  • Sergei M. Grudsky
    • 2
  • Egor A. Maksimenko
    • 2
  1. 1.Fakultät für MathematikTU ChemnitzChemnitzGermany
  2. 2.Departamento de MatemáticasCINVESTAV del I.P.N.MéxicoMéxico

Personalised recommendations