Advertisement

Interpretations of Leibniz’s Mathesis Universalis at the Beginning of the XXth Century

  • David Rabouin
Chapter
Part of the Publications des Archives Henri Poincaré Publications of the Henri Poincaré Archives book series (PAHP)

Abstract

In his doctoral dissertation, completed in 1922 under the direction of Edmund Husserl and published in 1925 in the Jahrbuch für Philosophie und Phänomenologische Forschungen, Dietrich Mahnke proposed a very valuable overview of the so-called “Leibniz Renaissance”. As indicated by the choice of his title: Leibnizens Synthese von Universalmathematik und Individualmetaphysik, this renaissance was seen by Mahnke as marked by a tension between two Leibnizian programs: that of a “universal mathematics” and that of a “metaphysics of individuation”. His agenda was to propose a way of reconciling these two programs through a point of view inspired by the development of Husserlian phenomenology. In this paper, I will concentrate on the first program, “universal mathematics” or mathesis universalis, and see how the interpretation of this Leibnizian theme was indeed a key point in the demarcation between different ways of articulating logic, mathematics and philosophy at the beginning of the XXth century.

Keywords

Universal Algebra General Science Logical Calculus Programmatic Declaration Husserlian Phenomenology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Brunschvicg 1912]
    Brunschvicg, Léon, Les étapes de la philosophie mathématique, Paris, Alcan, 1912.Google Scholar
  2. [Burkhardt 1980]
    Burkhardt, Hans, Logik und Semiotik in der Philosophie von Leibniz, München, Philosophia, 1980.Google Scholar
  3. [Cassirer 1998]
    Cassirer, Ernst, Leibniz’ System in seinen wissenschaftlichen Grundlagen (1902) [including, as its first part : Descartes’s Kritik der mathematischen und Naturwissenschaftlichen Erkenntnis (1899)], reed. Gesammelte Werke, t. I, Hamburg, F. Meiner, 1998.Google Scholar
  4. [Cassirer 1999]
    Cassirer, Ernst, Das Erkenntnisproblem in der Philosophie und Wissenschaft der neueren Zeit, vol. I, (1906), reed. Gesammelte Werke t. II, Hamburg, F. Meiner, 1999.Google Scholar
  5. [Couturat 1901]
    Couturat, Louis, La Logique de Leibniz d’après des documents inédits, Paris, Alcan, 1901.Google Scholar
  6. [Couturat 1988]
    Couturat, Louis, Opuscules et fragments inédits de Leibniz, extraits des manuscrits de la Bibliothèque de Hannovre, Paris, Alcan, 1903, rééd. Hildesheim, New-York, Olms, 1988.Google Scholar
  7. [Couturat 1980]
    Couturat, Louis, Les Principes des mathématiques (1905), reed. Paris, Albert Blanchard, 1980.Google Scholar
  8. [Descartes 1964]
    Descartes, René, OEuvres de Descartes, publiées par C. Adam et P. Tannery, 11 vol., nouvelle présentation en coédition avec le CNRS, Paris, Vrin, 1964–1974 [AT].Google Scholar
  9. [Fédi 2001]
    Fédi, Laurent, “L’esprit en marche contre les codes: philosophie des sciences et dépassement du kantisme chez Léon Brunschvicg”, in Les philosophies françaises et la science: dialogue avec Kant, sous la dir. de L. Fedi et J.-M. Salanskis, Cahiers d’Histoire et de Philosophie des Sciences n◦ 50, ENS éditions Lille, 2001, pp. 119–142.Google Scholar
  10. [Hintikka 1997]
    Hintikka, Jaakko, Lingua Universalis vs. Calculus Ratiocinator. An ultimate presupposition of Twentieth-century philosophy, Dordrecht, Kluwer Academic Publishers, 1997.Google Scholar
  11. [Husserl 1975]
    Husserl, Edmund, Logische Untersuchungen I (1900), reed. Husserliana, vol. XVIII, Den Haag, Martinus Nijhoff, 1975.Google Scholar
  12. [Husserl 1954]
    Husserl, Edmund, Die Krisis der europäischen Wissenschaften und die transzendantale Phänomenologie (1934–1937), La Haye, M. Nijhoff, 1954.Google Scholar
  13. [Klein 1936]
    Klein, Jacob, “Die griechische Logistik und die Entstehung der Algebra”, in Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik; Abteilung B: Studien, 3, n. 1 (1934), pp. 18–105 and n. 3 (1936), pp. 122–235.Google Scholar
  14. [Leibniz 1971]
    Leibniz, Gottfried Wilhelm von, Nouvelles lettres et opuscules inédits, éd. Foucher de Careil, 1857, rééd. Olms, Hildesheim-N.Y, 1971.Google Scholar
  15. [Leibniz 1981]
    Leibniz, Gottfried Wilhelm von, Nouveaux Essais sur l’entendement humain (1704), transl. Peter Remnant and Jonathan Bennett: New Essays on Human Understanding, Cambridge, Cambridge University Press, 1981.Google Scholar
  16. [Grosholz 1998]
    Grosholz, Emily and Yakira, Elhanan, Leibniz’s Science of the Rational, Studia Leibnitiana Sonderheft 26, Steiner Verlag, 1998 (with a transcription and a commentary of LH XXXV, I, 9).Google Scholar
  17. [Kneale 1962]
    Kneale, William & Martha, The Development of Logic, Oxford, Clarendon Press, 1962, rééd..Google Scholar
  18. [Mahnke 1964]
    Mahnke, Dietrich, Leibnizens Synthese von Universalmathematik und Individualmetaphysik, Max Niemeyer, Halle, 1925, Jahrbuch für Philosophie und Phänomenologische Forschungen, pp. 305–612 (reed. fac-simile, Stuttgart, 1964).Google Scholar
  19. [Rabouin 2005]
    Rabouin, David, “Logique, mathématique et imagination dans la philosophie de Leibniz”, Corpus, n. 49, “Logiques et philosophies à l’âge classique”, hiver 2005, p. 165–198.Google Scholar
  20. [Russell 1900]
    Russell, Bertrand, A Critical Exposition of the Philosophy of Leibniz, London, Unwin,1900.Google Scholar
  21. [Russell 1903]
    Russell, Bertrand, “ Recent Work on The Philosophy of Leibniz ”, Mind, vol. 12, n. 46, 1903, pp. 177–201.CrossRefGoogle Scholar
  22. [Schneider 1988]
    Schneider, Martin, “Funktion und Grundlegung der Mathesis Universalis im Leibnizschen Wissenschaftsystem ”, Studia Leibnitiana Sonderheft 15, 1988.Google Scholar
  23. [Van Heijenoort 1967]
    Van Heijenoort, Jean, “Logic as Calculus and Logic as Language”, Synthese, vol. 17 (1967), pp. 324–330.zbMATHCrossRefGoogle Scholar
  24. [Weyl 1926]
    Weyl, Hermann, Philosophie der Mathematik und Naturwissenschaft, Munich, R. Oldenbourg (Handbuch der Philosophie), 1926.Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Université Paris 7 – CNRS – Laboratoire SPHERE UMR 7219 Equipe Rehseis – Case 7093PARIS CEDEX 13France

Personalised recommendations