Skip to main content

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

We employ a computationally efficient fault system earthquake simulator, RSQSim, to explore effects of earthquake nucleation and fault system geometry on earthquake occurrence. The simulations incorporate rate- and state-dependent friction, high-resolution representations of fault systems, and quasi-dynamic rupture propagation. Faults are represented as continuous planar surfaces, surfaces with a random fractal roughness, and discontinuous fractally segmented faults. Simulated earthquake catalogs have up to 102 earthquakes that span a magnitude range from ∼M4.5 to M8. The seismicity has strong temporal and spatial clustering in the form of foreshocks and aftershocks and occasional large-earthquake pairs. Fault system geometry plays the primary role in establishing the characteristics of stress evolution that control earthquake recurrence statistics. Empirical density distributions of earthquake recurrence times at a specific point on a fault depend strongly on magnitude and take a variety of complex forms that change with position within the fault system. Because fault system geometry is an observable that greatly impacts recurrence statistics, we propose using fault system earthquake simulators to define the empirical probability density distributions for use in regional assessments of earthquake probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Belardinelli, M. E., Bizzarri A., and Cocco, M. (2003), Earthquake triggering by static and dynamic stress changes. J. Geophys. Res. (Solid Earth) 108, 2135±, doi:10.1029/2002JB001779.

    Article  Google Scholar 

  • Ben-zion, Y. and Rice, J. R. (1997), Dynamic simulations of slip on a smooth fault in an elastic solid. J. Geophys. Res. 102, 17771–17784, doi:10.1029/97JB01341.

    Article  Google Scholar 

  • Ben-zion, Y., and Sammis, C. G. (2003), Characterization of fault zones, Pure App. Geophy. 160, 677–715

    Article  Google Scholar 

  • Beroza, G. C., and Mikumo, T. (1996), Short slip duration in dynamic rupture in the presence of heterogeneous fault properties, J. Geophys. Res. 101, 22449–22460, doi:10.1029/96JB02291.

    Article  Google Scholar 

  • Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., and Berkowitz, B. (2001), Scaling of fracture systems in geological media. Rev. Geophys. 39, 347–384, doi:10.1029/1999RG000074.

    Article  Google Scholar 

  • Brune, J. (1970), Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. 75(26), 4997–5009.

    Article  Google Scholar 

  • Chester, F. M., and Chester, J. S. (2000), Stress and deformation along wavy frictional faults J. Geophys. Res. 105, 23,421–23,430, doi:10.1029/2000JB900241.

    Article  Google Scholar 

  • Dieterich, J. (1981), Constitutive properties of faults with simulated gouge. In Carter, N. L., Friedman, M., Logan, J.M., and Sterns, D. W. (eds), Monograph 24, Mechanical behavior of crustal rocks, Am. Geophys. Union, Washington, D.C., pp. 103–120.

    Google Scholar 

  • Dieterich, J. (1987) Nucleation and triggering of earthquake slip: effect of periodic stresses. Tectonophysics 144, 127–139, doi:10.1016/0040-1951(87)90012-6.

    Article  Google Scholar 

  • Dieterich, J., Applications of rate-and-state-dependent friction to models of fault slip and earthquake occurrence. In Schubert, G. (ed.) Treatise on Geophysics, Vol. 4 (Elsevier, Oxford 2007).

    Google Scholar 

  • Dieterich, J., and Smith, D. (2009), Non-planar faults: mechanics of slip and off-fault damage, Pure Appl. Geophys., 166, 1799–1815.

    Article  Google Scholar 

  • Dieterich, J.H. (1979), Modeling of rock friction 1. Experimental results and constitutive equations. J. Geophys. Res. 84, 2161–2168.

    Article  Google Scholar 

  • Dieterich, J. H. (1992), Earthquake nucleation on faults with rate-and state-dependent strength. Tectonophysics 211, 115–134.

    Article  Google Scholar 

  • Dieterich, J. H. (1994), A constitutive law for rate of earthquake production and its application to earthquake clustering, J. Geophys. Res. 99, 2601–2618.

    Article  Google Scholar 

  • Dieterich, J. H. (1995), Earthquake simulations with time-dependent nucleation and long-range interactions. J. Nonlinear Proc. Geophys. 2, 109–120.

    Article  Google Scholar 

  • Dieterich, J. H., and Kilgore, B. (1996) Implications of Fault Constitutive Properties for Earthquake Prediction. Proc. Natl. Acad Sci. USA 93, 3787–3794.

    Article  Google Scholar 

  • Duan, B. and Oglesby, D.D. (2006), Heterogeneous fault stresses from previous earthquakes and the effect on dynamics of parallel strike-slip faults, J. Geophys. Res. 111(B10), 5309±, doi:10.1029/2005JB004138.

    Article  Google Scholar 

  • Fliss, S., Bhat, H. S., Dmowska, R., Rice, J. R. (2005), Fault branching and rupture directivity. J. Geophys. Res. 110(B9), 6312±, doi:10.1029/2004JB003368.

    Article  Google Scholar 

  • Fournier, A., Fussell, D., and Carpenter, L. (1982), Computer rendering of stochastic models, Commun. ACM 25(6), 371–384, doi:10.1145/358523.358553.

    Article  Google Scholar 

  • Gomberg, J., Blanpied, M. L., and Beeler, N. M. (1997), Transient triggering of near and distant earthquakes, Bull. Seismol. Soc. Am. 87(2), 294–309, http://www.bssaonline.org/cgi/content/abstract/87/2/294 http://www.bssaonline.org/cgi/reprint/87/2/294.pd.

    Google Scholar 

  • Gomberg, J., Beeler, N.M., Blanpied, M.L., and Bodin, P. (1998), Earthquake triggering by transient and static deformations, J. Geophys. Res. 103, 24411–24426, doi:10.1029/98JB01125.

    Article  Google Scholar 

  • Gomberg, J., Beeler, N., and Blanpied, M. (2000), On rate-state and Coulomb failure models, J. Geophys. Res. 105, 7857–7872, doi:10.1029/1999JB900438.

    Article  Google Scholar 

  • Harris, R. A., Archuleta, R. J., Day, S. M. (1991) Fault steps and the dynamic rupture process: 2-D numerical simulations of a spontaneously propagating shear fracture, Geophys. Res. Lett. 18, 893–896.

    Article  Google Scholar 

  • Heaton, T.H. (1990), Evidence for and implications of self-healing pulses of slip in earthquake rupture, Phys. Earth Planet. Inter. 64, 1–20, doi:10.1016/0031-9201(90)90002-F.

    Article  Google Scholar 

  • Kagan, Y. Y., and Jackson, D. D. (1991), Long-term earthquake clustering, Geophys. J. Int. 104(1), 117–134, doi:10.1111/j.1365-246X.1991.tb02498.x.

    Article  Google Scholar 

  • Kagan, Y. Y., and Jackson, D. D. (1999), Worldwide doublets of large shallow earthquakes, Bull. Seismol. Soc. Am. 89(5), 1147–1155.

    Google Scholar 

  • King, G. C. P., and Bowman, D. D. (2003), The evolution of regional seismicity between large earthquakes, J. Geophys. Res. 108, 2096±, doi:10.1029/2001JB000783.

    Article  Google Scholar 

  • Linker, M. F., and Dieterich, J. H. (1992), Effects of variable normal stress on rock friction— observations and constitutive equations, J. Geophys. Res. 97, 4923–4940.

    Article  Google Scholar 

  • Marone, C. (1998), Laboratory-derived friction laws and their application to seismic faulting. Annual Rev. Earth Planet. Sci. 26, 643–696, doi:10.1146/annurev.earth.26.1.643.

    Article  Google Scholar 

  • Meade, B. J. (2007), Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space, Comp. Geosci. 33, 1064–1075, doi:10.1016/j.cageo.2006.12.003.

    Article  Google Scholar 

  • Nielsen, S. B., and Knopoff, L. (1998), The equivalent strength of geometrical barriers to earthquakes, J. Geophys. Res. 103, 9953–9966, doi:10.1029/97JB03293.

    Article  Google Scholar 

  • Oglesby, D. D., Day, S. M., Li, Y. G., Vidale, J. E. (2003), The 1999 Hector Mine earthquake: the dynamics of a branched fault system, Bull. Seismol. Soc. Am. 93, 2459–2476

    Article  Google Scholar 

  • Okada, Y. (1992), Internal deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am. 82, 1018–1040.

    Google Scholar 

  • Okubo, P. G., and Aki, K. (1987), Fractal geometry in the San Andreas fault system, J. Geophys. Res. 92, 345–356.

    Article  Google Scholar 

  • Power, W. L., and Tullis, T. E. (1991), Euclidean and fractal models for the description of rock surface roughness, J. Geophys. Res. 96, 415–424.

    Article  Google Scholar 

  • Rice, J. R. (1983), Constitutive relations for fault slip and earthquake instabilities, Pure Appl. Geophys. 121, 443–475, doi:10.1007/BF02590151.

    Article  Google Scholar 

  • Robinson, R., and Benites, R. (1995) Synthetic seismicity models of multiple interacting faults, J. Geophys. Res. 100, 18229–18238, doi:10.1029/95JB01569.

    Article  Google Scholar 

  • Rubin, A. M., and Ampuero, J. P. (2005), Earthquake nucleation on (aging) rate and state faults. J. Geophys. Res. (Solid Earth) 110(B9), 11312±, doi:10.1029/2005JB003686.

    Article  Google Scholar 

  • Ruina, A. (1983), Slip instability and state variable friction laws, J. Geophys. Res. 88, 10359–10370.

    Article  Google Scholar 

  • Rundle, J. B., and Klein, W. (1993), Scaling and critical phenomena in a cellular automaton slider-block model for earthquakes. J. Statist. Phys. 72, 405–412, doi:10.1007/BF01048056.

    Article  Google Scholar 

  • Rundle, J. B., Rundle, P. B., Donnellan, A., and Fox, G. (2004), Gutenberg— Richter statistics in topologically realistic systemlevel earthquake stress-evolution simulations, Earth, Planets, and Space 56, 761–771.

    Google Scholar 

  • Sagy, A., Brodsky, E. E., and Axen, G. J. (2007), Evolution of fault-surface roughness with slip, Geology 35, 283±, doi:10.1130/G23235A.1.

    Article  Google Scholar 

  • Saucier, F., Humphreys, E., and Weldon, R. I. (1992), Stress near geometrically complex strike-slip faults — Application to the San Andreas fault at Cajon Pass, southern California, J. Geophys. Res. 97, 5081–5094.

    Article  Google Scholar 

  • Savage, J. C. (1983), A dislocation model of strain accumulation and release at a subduction zone. J. Geophys. Res. 88, 4984–4996.

    Article  Google Scholar 

  • Scholz, C. H. and Aviles, C. A. (1986), The fractal geometry of faults and faulting. In Das S., Boatwright J., Scholz C. H.(eds), Earthquake source mechanics (Maurice Ewing Volume 6), Am. Geophys. Union, Washington, D.C., pp. 147–155.

    Google Scholar 

  • Shaw, B. E. and Dieterich, J. H. (2007), Probabilities for jumping fault segment stepovers, Geophys. Res. Lett. 34:L01,307, doi:10.1029/2006GL027980.

    Article  Google Scholar 

  • Steacy, S. J. and McCloskey, J. (1999), Heterogeneity and the earthquake magnitude— frequency distribution. Geophys. Res. Lett. 26, 899–902, doi:10.1029/1999GL900135.

    Article  Google Scholar 

  • Stirling, M. W., Wesnousky, S. G., and Shimazaki, K. (1996), Fault trace complexity, cumulative slip, and the shape of the magnitude— frequency distribution for strike-slip faults: a global survey, Geophys. J. Internatl. 124, 833–868, doi:10.1111/j.1365-246X.1996.tb05641.x.

    Article  Google Scholar 

  • Tullis, T. E. (1988), Rock friction constitutive behavior from laboratory experiments and its implications for an earthquake prediction field monitoring program, Pure Appl. Geophys. 126, 555–588, doi:10.1007/BF00879010.

    Article  Google Scholar 

  • Ward, S. N. (1996), A synthetic seismicity model for southern California: Cycles, probabilities, and hazard, J. Geophys. Res. 101, 22393–22418, doi:10.1029/96JB02116.

    Article  Google Scholar 

  • Ward, S. N. (2000), San Francisco Bay Area earthquake simulations: A step toward a standard physical earthquake model, Bull. Seismol. Soc. Am. 90, 370–386, doi:10.1785/0119990026.

    Article  Google Scholar 

  • Wesnousky, S. G. (1994), The Gutenberg— Richter or characteristic earthquake distribution, which is it? Bull. Seismol. Soc. Am. 84(6), 1940–1959, http://www.bssaonline.org/cgi/content/abstract/84/6/1940

    Google Scholar 

  • Working Group on California Earthquake Probabilities (WGCEP) (2007), The Uniform California Earthquake Rupture Forecast, version 2 (UCERF 2). USGS Prof. Pap. 2007–1437, http://pubs.usgs.gov/of/2007/143.

  • zheng, G. and Rice, J. R. (1998), Conditions under which velocity-weakening friction allows a self-healing versus a cracklike mode of rupture, Bull. Seismol. Soc. Am. 86, 1466–1483.

    Google Scholar 

  • Ziv, A. and Rubin, A. M. (2003), Implications of rate-and-state friction for properties of aftershock sequence: Quasi-static inherently discrete simulations, J. Geophys. Res. 108, 2051, doi:10.1029/2001JB001219.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Basel AG

About this chapter

Cite this chapter

Dieterich, J.H., Richards-Dinger, K.B. (2010). Earthquake Recurrence in Simulated Fault Systems. In: Savage, M.K., Rhoades, D.A., Smith, E.G.C., Gerstenberger, M.C., Vere-Jones, D. (eds) Seismogenesis and Earthquake Forecasting: The Frank Evison Volume II. Pageoph Topical Volumes. Springer, Basel. https://doi.org/10.1007/978-3-0346-0500-7_15

Download citation

Publish with us

Policies and ethics